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Regulatory T cell frequency, but not
plasma IL-33 levels, represents potential
immunological biomarker to predict clinical
response to intravenous immunoglobulin
therapy
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Abstract

Background: Intravenous immunoglobulin (IVIG) is a polyspecific pooled immunoglobulin G preparation and one
of the commonly used therapeutics for autoimmune diseases including those of neurological origin. A recent
report in murine model proposed that IVIG expands regulatory T (Treg) cells via induction of interleukin 33 (IL-33).
However, translational insight on these observations is lacking.

Methods: Ten newly diagnosed Guillain-Barré syndrome (GBS) patients were treated with IVIG at the rate of 0.4 g/kg
for three to five consecutive days. Clinical evaluation for muscular weakness was performed by Medical Research
Council (MRC) and modified Rankin scoring (MRS) system. Heparinized blood samples were collected before and 1, 2,
and 4–5 weeks post-IVIG therapy. Peripheral blood mononuclear cells were stained for surface CD4 and intracellular
Foxp3, IFN-γ, and tumor necrosis factor alpha (TNF-α) and were analyzed by flow cytometry. IL-33 and prostaglandin
E2 in the plasma were measured by ELISA.

Results: The fold changes in plasma IL-33 at week 1 showed no correlation with the MRC and MRS scores at
weeks 1, 2, and ≥4 post-IVIG therapy. Clinical recovery following IVIG therapy appears to be associated with
Treg cell response. Contrary to murine study, there was no association between the fold changes in IL-33 at
week 1 and Treg cell frequency at weeks 1, 2, and ≥4 post-IVIG therapy. Treg cell-mediated clinical response to
IVIG therapy in GBS patients was associated with reciprocal regulation of effector T cells-expressing TNF-α.
Conclusion: Treg cell expansion by IVIG in patients with autoimmune diseases lack correlation with IL-33. Treg
cell frequency, but not plasma IL-33 levels, represents potential immunological biomarker to predict clinical response to
IVIG therapy.
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Table 1 Demographics and clinical information of GBS patients

Sl no. Age (years) Sex MRC score (pre-IVIG) MRS (pre-IVIG)

P1 61 Male 30 5

P2 68 Female 80 4

P3 57 Male 85 1

P4 70 Female 68 4

P5 82 Male 70 3

P6 66 Female 78 2

P7 85 Male 54 4

P8 60 Female 70 4

P9 68 Male 54 5

P10 59 Female 13 4
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Findings
Introduction
Intravenous immunoglobulin (IVIG) is a polyspecific
pooled immunoglobulin G preparation and one of the
commonly used immunotherapeutics for the treatment
of autoimmune diseases including those of neurological
origin [1–4]. Various reports demonstrate that IVIG
exerts beneficial effects through several mutually
non-exclusive mechanisms including expansion of
CD4+Foxp3+ regulatory T cells (Treg cells) [5–10].
Some of these mechanisms are also being explored
as biomarkers of IVIG response [11, 12]. Treg cells
play an indispensable role in the maintenance of im-
mune tolerance and suppress unnecessary deleterious
immune responses, such as autoimmunity [13]. IVIG
is shown to expand Treg cells and enhance their
functions in experimental animal models and patients
with autoimmune diseases [9, 14–17]. Recent studies
suggested that IVIG-induced expansion of Treg cells
requires the prime role of dendritic cells (DCs), and
involves interaction of IVIG with C-type lectin recep-
tors, such as dendritic cell-specific intercellular adhe-
sion molecule-3-grabbing non-integrin (DC-SIGN)
and dendritic cell immunoreceptor (DCIR), and is
mediated through prostaglandin (PG) E2 secreted by
DCs [15, 18]. Interestingly, based on the murine models
of autoimmune diseases, i.e., antibody-mediated K/BxN
arthritis and T cell-mediated experimental autoimmune
encephalitis, a recent report proposed that induction of
interleukin 33 (IL-33) in macrophages by IVIG through
interaction of α2,6-sialylated crystallizable fraction (Fc)
with SIGN-R1 or human DC-SIGN is essential for the ex-
pansion of Treg cells [19, 20]. However, translational
insight on these observations in patients with auto-
immune diseases is lacking.
Guillain-Barré syndrome (GBS) is an autoimmune dis-

ease of neurological origin affecting the peripheral
nerves [21]. GBS is believed to be caused by effector T
cells and autoantibodies to myelin components [22, 23].
Furthermore, GBS patients display reduced frequency of
Treg cells that are required for the prevention of auto-
immunity [24]. Amelioration of experimental auto-
immune neuritis, an experimental model of GBS, was
associated with up-regulation of Treg cells [25]. Cur-
rently IVIG is used as a first-line therapy for GBS [26].
Of note, sialylated IVIG has been shown to suppress
anti-ganglioside antibody-mediated nerve injury in ex-
perimental GBS model and was associated with in-
creased expression of IL-33 mRNA [27]. Sialylated IVIG
also inhibited anti-ganglioside antibody-mediated com-
plement deposition in vitro [28]. In view of these re-
ports, we investigated the role of IL-33 towards clinical
response to IVIG treatment and Treg cell expansion in
GBS patients. We found that kinetics of peripheral Treg
cell expansion and improvement of clinical symptoms in
GBS patients following IVIG therapy lack correlation
with the level of induction of IL-33 in the blood.
Materials and methods
Clinical evaluation and sample collection
A total of ten treatment-naïve patients (mean age of
68 years) exhibiting neurological signs of GBS were
enrolled based on the diagnostic criteria (Table 1).
The study was approved by relevant ethical committee
(84-2012-08, CHU Limoges) and consent was obtained
from the enrolled patients. The patients received IVIG at
the rate of 0.4 g/kg for three (three patients) or five (seven
patients) consecutive days. Clinical evaluation for the
muscular weakness using Medical Research Council
(MRC) and modified Rankin score (MRS) grading systems
and collection of heparinized blood samples were done
before and 1, 2, and 4–5 weeks after the initiation of IVIG
treatment (post-IVIG) [29]. For all the patients, the MRC
is a sum score of ten muscle groups tested bilaterally
(min = 0, max = 100).
Flow cytometry and ELISA
Plasma and peripheral blood mononuclear cells
(PBMCs) were separated from the heparinized blood
samples. PBMCs were stained for surface CD4 and intra-
cellular Foxp3, and also interferon gamma (IFN-γ) and
tumor necrosis factor alpha (TNF-α) following stimula-
tion with phorbol myristate acetate (50 ng/mL) and
ionomycin (500 ng/mL, Sigma-Aldrich, France), along
with GolgiStop (BD Biosciences, France), for 4 h. The
intracellular staining was performed using Foxp3 staining
kit (eBioscience, France) as per the manufacturer’s instruc-
tions. Stained cells were acquired on LSR II (BD Biosci-
ences) flow cytometer and data was analyzed using BD
FACS DIVA (BD Biosciences) and FlowJo (FlowJo LLC,
USA) softwares. IL-33 was measured in the plasma by
ELISA (R&D systems, France). The amount of PGE2 in the
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plasma samples was estimated by ELISA as described previ-
ously [15].

Statistical analysis
One-way ANOVA “Kruskal-Wallis test” was used for the
analysis of IL-33 in the plasma. Pearson correlation (r)
was used to determine the association between MRC or
MRS scores and plasma levels of IL-33 and PGE2 and
the frequency of Treg cells in the blood of GBS patients
at different time points following IVIG treatment. Same
assay was also used for determining the association
IL-33
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Results and discussion
The overall rate of new incidence of GBS is 0.6–4.0/
year/100,000 people. We limited our investigation only
to newly diagnosed and treatment-naïve GBS patients to
avoid possible modulatory effects of past IVIG therapy
or other therapeutic agents on the Treg cells and other
immune parameters. This explicates the difficulties in
enrolling treatment-naïve patients for the investigation.
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Table 2 Correlation between MRS scores at different time points
(weeks 1, 2, and ≥4) after initiation of IVIG therapy and the
immunological parameters such as IL-33, Treg cells, and PGE2 at
week 1. The values in the parenthesis denote statistical significance

r values
(p values)

MRS (week post-IVIG)

Week 1 2 ≥4

IL-33 1 0.57 (0.14) −0.60 (0.20) 0.71 (0.42)

Treg cell 1 −0.37 (0.3601) −0.61 (0.1067) −0.47 (0.0684)

PGE2 1 −0.16 (0.6954) −0.29 (0.4361) −0.07 (0.8936)
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As kinetics of IL-33 induction in the plasma of patients
with autoimmune diseases following IVIG therapy was
not explored earlier, we first analyzed plasma levels of
IL-33 in ten GBS patients at various time points (pre-
IVIG and weeks 1, 2, and ≥4 after initiation of IVIG
therapy). Patients had variable pre-IVIG plasma IL-33
levels that significantly increased at week 1 in all the
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patients. This data thus confirms our recent observation
in IVIG-treated inflammatory myopathy and anti-
neutrophil cytoplasmic antibody-associated vasculitis pa-
tients [30]. At subsequent time points, IL-33 levels in
the plasma of IVIG-treated GBS patients declined pro-
gressively but remain significantly higher than the pre-
IVIG levels (Fig. 1a) indicating sustained effect of IVIG
beyond its half-life on plasma IL-33 levels.
In order to explore the role of IL-33 in IVIG-

mediated therapeutic effects, we analyzed whether IL-
33 induction correlates with clinical response to IVIG
therapy and Treg cell expansion [29]. Of note, the fold
changes in plasma IL-33 level at week 1 showed no cor-
relation with the MRC scores at weeks 1, 2, and ≥4
post-IVIG therapy (Fig. 1b). Also, the r values are con-
sistently negative at all the time points. On the other
hand, Treg cell response following IVIG therapy appears
to be linked with clinical recovery from GBS and is
consistent with the previous observations on essential
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role of Treg cells in IVIG-induced protection in mouse
models [18, 31]. Yet, we observed no correlation be-
tween the fold-changes in Treg cells at week 1 and clin-
ical score at weeks 1, 2, and ≥4 (Fig. 1c). These results
suggest that Treg cells, but not IL-33, might predict
clinical response to IVIG therapy.
Similar observations are also made with MRS parame-

ters. We found that the fold changes in IL-33 level at
week 1 displayed no correlation with MRS scores at
weeks 1, 2, and ≥4 following initiation of IVIG therapy
indicating that clinical improvement as analyzed by MRS
is also not associated with changes in IL-33 levels in the
blood. As in the case of MRC scores, changes in Treg

cells were suggestive of clinical response to IVIG therapy
by MRS parameters as well. However, the fold changes
in Treg cells at week 1 and MRS scores at weeks 1, 2,
and ≥4 post-IVIG therapy did not correlate (Table 2).
As data from the recent mouse study suggested that

Treg cell expansion by IVIG is dependent on IL-33 [20],
we analyzed correlation between IL-33 and Treg cells in
these patients at various time points. Contrary to Fiebiger
et al., we found no consistent association between the fold
changes in IL-33 level at week 1 and Treg cell fre-
quency at weeks 1, 2, and ≥4 after initiation of IVIG
therapy (Fig. 2a), implying that Treg cell expansion by
IVIG in patients with autoimmune diseases is not re-
lated to levels of IL-33 in the plasma.
Expansion of Treg cells in the periphery is mediated by

the signals derived from professional antigen presenting
cells such as DCs. Unlike other cytokines, IL-33 can be
released into the microenvironment only upon injury to
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the cells and acts as alarmin to signal tissue damage to
the immune system [32]. Our recent report shows that
DC-SIGN-positive human innate cells derived either
from the peripheral blood or from the spleen do not re-
lease IL-33 upon IVIG exposure [30]. Therefore, unlike
murine models [19, 20], it is likely that damaged non-
immune cells like endothelial cells or epithelial cells
might have contributed to increased levels of IL-33 ob-
served in the plasma of patients following IVIG therapy.
Despite the lack of IL-33 induction, “IVIG-educated”
DC-SIGN-positive human DCs induced Treg cell expan-
sion, a process mediated via cyclooxygenase-2-dependent
PGE2 and independent of Fc-fragments of IVIG [15]. Not-
ably, there was a significant increase in the plasma levels
of PGE2 in IVIG-treated GBS patients [33]. In the current
study, although plasma PGE2 levels are enhanced in IVIG-
treated patients, we found no correlation between the fold
changes in PGE2 level at week 1 and Treg cell frequencies
at week 1, 2, and ≥4 post-IVIG therapy (Fig. 2b). Similarly,
fold changes in PGE2 level at week 1 did not correlate with
MRC score at weeks 1, 2, and ≥4 post-IVIG therapy
(Fig. 3). The reason for the non-significant correlation of
values might rests in the low number of patients. A recent
report shows that plasma PGE2 levels correlate with the
prevention of IVIG resistance in Kawasaki disease [34].
Taken together, these results are suggestive of a role for
PGE2-mediated expansion of Treg cells in the clinical re-
covery of patients following IVIG therapy.
In the previous report [30], we analyzed IL-33 in the

plasma of patients with rheumatic disorders as early as
48–72 h following initiation of IVIG therapy. With the
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exception of two, the remaining 14 patients had IL-33
levels below 500 pg/ml of plasma following IVIG ther-
apy. Although the underlying pathologies in that report
and current study are different, we found that at 1 week
following initiation of IVIG therapy, IL-33 level in the
plasma was more than 1000 pg/ml in nine GBS patients.
Furthermore, in majority of the patients (seven), IVIG
was given daily for five consecutive days. Therefore, lack
of consistent association between the fold changes in IL-
33 level and Treg cell frequency following IVIG therapy
might not be due to loss of IL-33 subsequent to proteo-
lytic cleavage and binding to ST2 receptor. Also, IL-33
levels observed at first week are maintained in majority
of the patients even after 4 weeks post-IVIG. Whether
polymorphisms in either ST2 receptor, IL-1RL1, and/or
IL-33 itself, skew the plasma kinetics and/or downstream
effects of IL-33 remains to be determined [35, 36].
Current literature suggests that IVIG can induce Treg cell

expansion by several mutually non-exclusive mechanisms
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[9, 14, 16, 17, 31] that may vary among the pathologies and
even among the patients with same underlying pathology.
This might explain the lack of significant correlation be-
tween PGE2 and Treg cells. As we restricted our study only
to treatment-naïve GBS patients, difficulty to get large
number of patients provides an alternative explanation for
the lack of significant positive correlation between changes
in the IL-33 and PGE2, and Treg cells. Role of IL-33 in the
microenvironment towards DC-mediated human Treg
expansion requires further exploration.
In addition to expansion of Treg cells, IVIG is also

known to enhance their functions and suppress ef-
fector T cell proliferation and production of cytokines
such as IFN-γ and TNF-α [16, 31]. Interestingly, in
IVIG-treated GBS patients, there was a significant
negative correlation between the fold changes in Treg

cells at week 1 and T cells expressing TNF-α at week
1 post-IVIG therapy. However, such consistent associ-
ation was not observed with T cells expressing IFN-γ
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(Fig. 4a, b). Thus, Treg cell-mediated clinical response
to IVIG therapy is associated with reciprocal regula-
tion of effector T cells in GBS patients.

Conclusions
Because of its role as promoter of type 2 immune re-
sponses and regulator of innate and adaptive immune
responses, IL-33 has been explored as therapeutic option
in pre-clinical models of Alzheimer’s disease [37], stroke
[38], cerebral malaria [39], and transplantation [40]. In
addition, IL-33 was also reported to be essential to at-
tenuate viral-induced encephalitis [41]. In line with these
reports, enhanced expression of IL-33 in mice was sug-
gested to mediate Treg cell expansion and protection by
IVIG [19, 20, 27]. Translation of these results to human
is complicated and requires thorough investigation. In-
deed, we found that up-regulation of plasma IL-33 does
not correlate with the clinical response to IVIG therapy
and expansion of Treg cells in GBS patients. Treg cells on
the other hand are negatively correlated to effector T
cells expressing TNF-α. Thus, the mechanism of IL-33
induction by IVIG and its role in Treg cell expansion ob-
served in mouse models might not be applicable to hu-
man. Small size of the patients’ cohort represents
limitation of this study. Nevertheless, based on these
findings, Treg cell frequency, but not plasma IL-33 levels,
represents potential immunological biomarker to predict
clinical response to IVIG therapy.
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