C. He and D. J. Klionsky, Regulation mechanisms and signaling pathways of autophagy, Annu. Rev. Genet, vol.43, pp.67-93, 2009.

D. J. Klionsky, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.12, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439629

M. Mehrpour, A. Esclatine, I. Beau, and P. Codogno, Overview of macroautophagy regulation in mammalian cells, Cell Res, vol.20, pp.748-762, 2010.

A. Bhattacharya and N. T. Eissa, Autophagy and autoimmunity crosstalks. Front. Immunol, vol.4, p.88, 2013.

H. H. Pua, I. Dzhagalov, M. Chuck, N. Mizushima, and Y. W. He, A critical role for the autophagy gene Atg5 in T cell survival and proliferation, J. Exp. Med, vol.204, pp.25-31, 2007.

J. S. Rockel and M. Kapoor, Autophagy: controlling cell fate in rheumatic diseases, Nat. Rev. Rheumatol, vol.12, pp.517-531, 2016.

F. Gros, Macroautophagy is deregulated in murine and human lupus T lymphocytes, Autophagy, vol.8, pp.1113-1123, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00715328

J. Hampe, A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1, Nat. Genet, vol.39, pp.207-211, 2007.

J. D. Rioux, Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis, Nat. Genet, vol.39, pp.596-604, 2007.

P. S. Ramos, A comprehensive analysis of shared loci between systemic lupus erythematosus (SLE) and sixteen autoimmune diseases reveals limited genetic overlap, PLoS Genet, vol.7, p.1002406, 2011.

N. Y. Lin, Autophagy regulates TNF?-mediated joint destruction in experimental arthritis, Ann. Rheum. Dis, vol.72, pp.761-768, 2013.

M. Alirezaei, Elevated ATG5 expression in autoimmune demyelination and multiple sclerosis, Autophagy, vol.5, pp.152-158, 2009.

A. Nogalska, C. D'agostino, C. Terracciano, W. K. Engel, and V. Askanas, Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers, Am. J. Pathol, vol.177, pp.1377-1387, 2010.

V. R. Villella, Autophagy suppresses the pathogenic immune response to dietary antigens in cystic fibrosis, Cell Death Dis, vol.10, p.258, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02095636

H. Yin, The therapeutic and pathogenic role of autophagy in autoimmune diseases, Front. Immunol, vol.9, p.1512, 2018.

S. R. Bonam, F. Wang, and S. Muller, Autophagy: a new concept in autoimmunity regulation and a novel therapeutic option, J. Autoimmun, vol.94, pp.16-32, 2018.

E. W. Gelfand, Intravenous immune globulin in autoimmune and inflammatory diseases, N. Engl. J. Med, vol.367, pp.2015-2025, 2012.

J. Bayry, V. S. Negi, and S. V. Kaveri, Intravenous immunoglobulin therapy in rheumatic diseases, Nat. Rev. Rheumatol, vol.7, pp.349-359, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02455562

E. E. Perez, Update on the use of immunoglobulin in human disease: a review of evidence, J. Allergy Clin. Immunol, vol.139, pp.1-46, 2017.

J. D. Lunemann, F. Nimmerjahn, and M. C. Dalakas, Intravenous immunoglobulin in neurology-mode of action and clinical efficacy, Nat. Rev. Neurol, vol.11, pp.80-89, 2015.

C. Galeotti, S. V. Kaveri, and J. Bayry, IVIG-mediated effector functions in autoimmune and inflammatory diseases, Int. Immunol, vol.29, pp.491-498, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01723553

J. F. Seite, Y. Shoenfeld, P. Youinou, and S. Hillion, What is the contents of the magic draft IVIg?, Autoimmun. Rev, vol.7, pp.435-439, 2008.

J. F. Seite, S. Hillion, T. Harbonnier, and J. O. Pers, Review: intravenous immunoglobulin and B cells: when the product regulates the producer, Arthritis Rheumatol, vol.67, pp.595-603, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128991

M. S. Maddur, S. V. Kaveri, and J. Bayry, Circulating normal IgG as stimulator of regulatory T cells: lessons from intravenous immunoglobulin, Trends Immunol, vol.38, pp.789-792, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02455453

Y. Kabeya, LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, EMBO J, vol.19, pp.5720-5728, 2000.

B. M. Fiebiger, J. Maamary, A. Pincetic, and J. V. Ravetch, Protection in antibodyand T cell-mediated autoimmune diseases by antiinflammatory IgG Fcs requires type II FcRs, Proc. Natl Acad. Sci. USA, vol.112, pp.2385-2394, 2015.

I. Schwab, Broad requirement for terminal sialic acid residues and Fc?RIIB for the preventive and therapeutic activity of intravenous immunoglobulins in vivo, Eur. J. Immunol, vol.44, pp.1444-1453, 2014.

A. H. Massoud, Dendritic cell immunoreceptor: a novel receptor for intravenous immunoglobulin mediates induction of regulatory T cells, J. Allergy Clin. Immunol, vol.133, p.855, 2014.

S. Bozza, F. Kasermann, S. V. Kaveri, L. Romani, and J. Bayry, Intravenous immunoglobulin protects from experimental allergic bronchopulmonary aspergillosis via a sialylation-dependent mechanism, Eur. J. Immunol, vol.49, pp.195-198, 2019.

S. Othy, Sialylation may be dispensable for reciprocal modulation of helper T cells by intravenous immunoglobulin, Eur. J. Immunol, vol.44, pp.2059-2063, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02455514

S. Q. Nagelkerke, Inhibition of Fc?R-mediated phagocytosis by IVIg is independent of IgG-Fc sialylation and Fc?RIIb in human macrophages, Blood, vol.124, pp.3709-3718, 2014.

I. K. Campbell, Therapeutic effect of IVIG on inflammatory arthritis in mice is dependent on the Fc portion and independent of sialylation or basophils, J. Immunol, vol.192, pp.5031-5038, 2014.

D. Leontyev, Sialylation-independent mechanism involved in the amelioration of murine immune thrombocytopenia using intravenous gammaglobulin, Transfusion, vol.52, pp.1799-1805, 2012.

T. Tha-in, Intravenous immunoglobulins suppress T-cell priming by modulating the bidirectional interaction between dendritic cells and natural killer cells, Blood, vol.110, pp.3253-3262, 2007.

P. Trepanier, E. Aubin, and R. Bazin, IVIg-mediated inhibition of antigen presentation: predominant role of naturally occurring cationic IgG, Clin. Immunol, vol.142, pp.383-389, 2012.

E. F. Blommaart, U. Krause, J. P. Schellens, H. Vreeling-sindelarova, and A. J. Meijer, The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes, Eur. J. Biochem, vol.243, pp.240-246, 1997.

M. R. Ehrenstein and C. A. Notley, The importance of natural IgM: scavenger, protector and regulator, Nat. Rev. Immunol, vol.10, pp.778-786, 2010.

S. V. Kaveri, G. J. Silverman, and J. Bayry, Natural IgM in immune equilibrium and harnessing their therapeutic potential, J. Immunol, vol.188, pp.939-945, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02455557

S. Panda and J. L. Ding, Natural antibodies bridge innate and adaptive immunity, J. Immunol, vol.194, pp.13-20, 2015.

C. Peral-de-castro, Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion, J. Immunol, vol.189, pp.4144-4153, 2012.

J. Harris, T helper 2 cytokines inhibit autophagic control of intracellular Mycobacterium tuberculosis, Immunity, vol.27, pp.505-517, 2007.

H. J. Park, IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway, Mol. Immunol, vol.48, pp.720-727, 2011.

A. Fischer, Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies, J. Allergy Clin. Immunol, vol.140, p.1388, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01783653

T. Laragione and P. S. Gulko, mTOR regulates the invasive properties of synovial fibroblasts in rheumatoid arthritis, Mol. Med, vol.16, pp.352-358, 2010.

D. Cejka, Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis, Arthritis Rheum, vol.62, pp.2294-2302, 2010.

A. Ramos-barron, Prevention of murine lupus disease in (NZBxNZW)F1 mice by sirolimus treatment, Lupus, vol.16, pp.775-781, 2007.

N. Prevel, Y. Allenbach, D. Klatzmann, B. Salomon, and O. Benveniste, Beneficial role of rapamycin in experimental autoimmune myositis, PLoS ONE, vol.8, p.74450, 2013.

J. Bayry, Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-? present in serum from patients with systemic lupus erythematosus, Arthritis Rheum, vol.48, pp.3497-3502, 2003.

V. Siragam, Intravenous immunoglobulin ameliorates ITP via activating Fc gamma receptors on dendritic cells, Nat. Med, vol.12, pp.688-692, 2006.

A. Smed-sorensen, IgG regulates the CD1 expression profile and lipid antigen-presenting function in human dendritic cells via Fc?RIIa, Blood, vol.111, pp.5037-5046, 2008.

L. K. Kozicky, Intravenous immunoglobulin skews macrophages to an anti-inflammatory, IL-10-producing activation state, J. Leukoc. Biol, vol.98, pp.983-994, 2015.

D. Y. Fann, Intravenous immunoglobulin suppresses NLRP1 and NLRP3 inflammasome-mediated neuronal death in ischemic stroke, Cell Death Dis, vol.4, p.790, 2013.

A. A. Tarique, Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages, Am. J. Respir. Cell Mol. Biol, vol.53, pp.676-688, 2015.

J. L. Webber, Regulation of autophagy by p38alpha MAPK, Autophagy, vol.6, pp.292-293, 2010.

D. S. Kim, p38 Mitogen-activated protein kinase is involved in endoplasmic reticulum stress-induced cell death and autophagy in human gingival fibroblasts, Biol. Pharm. Bull, vol.33, pp.545-549, 2010.

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat. Cell. Biol, vol.13, pp.132-141, 2011.

L. Shang, Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK, Proc. Natl Acad. Sci. USA, vol.108, pp.4788-4793, 2011.

A. Bai, AMPK agonist downregulates innate and adaptive immune responses in TNBS-induced murine acute and relapsing colitis, Biochem. Pharmacol, vol.80, pp.1708-1717, 2010.

N. Nath, Loss of AMPK exacerbates experimental autoimmune encephalomyelitis disease severity, Biochem. Biophys. Res. Commun, vol.386, pp.16-20, 2009.

R. M. Anthony, T. Kobayashi, F. Wermeling, and J. V. Ravetch, Intravenous gammaglobulin suppresses inflammation through a novel T(H)2 pathway, Nature, vol.475, pp.110-113, 2011.

Y. Shoenfeld, Efficacy of IVIG affinity-purified anti-double-stranded DNA anti-idiotypic antibodies in the treatment of an experimental murine model of systemic lupus erythematosus, Int. Immunol, vol.14, pp.1303-1311, 2002.

M. S. Maddur, Inhibition of differentiation, amplification, and function of human TH17 cells by intravenous immunoglobulin, J. Allergy Clin. Immunol, vol.127, pp.821-827, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-02455567

J. Trinath, Intravenous immunoglobulin expands regulatory T cells via induction of cyclooxygenase-2-dependent prostaglandin E2 in human dendritic cells, Blood, vol.122, pp.1419-1427, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02455532

S. Othy, Intravenous gammaglobulin inhibits encephalitogenic potential of pathogenic T cells and interferes with their trafficking to the central nervous system, implicating sphingosine-1 phosphate receptor 1-mammalian target of rapamycin axis, J. Immunol, vol.190, pp.4535-4541, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-02455535

A. E. Wiedeman, Contrasting mechanisms of interferon-? inhibition by intravenous immunoglobulin after induction by immune complexes versus Toll-like receptor agonists, Arthritis Rheum, vol.65, pp.2713-2723, 2013.

C. Saha, Monomeric immunoglobulin A from plasma inhibits human Th17 responses in vitro independent of Fc?RI and DC-SIGN, Front. Immunol, vol.8, p.275, 2017.

C. Schneider, IVIG regulates the survival of human but not mouse neutrophils, Sci. Rep, vol.7, p.1296, 2017.

C. Galeotti, Intravenous immunoglobulin induces IL-4 in human basophils by signaling through surface-bound IgE, J. Allergy Clin. Immunol, vol.144, p.528, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02284256

F. Rossi, D. R. Jayne, C. M. Lockwood, and M. D. Kazatchkine, Anti-idiotypes against anti-neutrophil cytoplasmic antigen autoantibodies in normal human polyspecific IgG for therapeutic use and in the remission sera of patients with systemic vasculitis, Clin. Exp. Immunol, vol.83, pp.298-303, 1991.

M. C. Dalakas, A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis, N. Engl. J. Med, vol.329, 1993.

M. Basta and M. C. Dalakas, High-dose intravenous immunoglobulin exerts its beneficial effect in patients with dermatomyositis by blocking endomysial deposition of activated complement fragments, J. Clin. Invest, vol.94, pp.1729-1735, 1994.

A. Tournadre, Th1 and Th17 balance in inflammatory myopathies: interaction with dendritic cells and possible link with response to high-dose immunoglobulins, Cytokine, vol.46, pp.297-301, 2009.

J. Bayry, L. Mouthon, and S. V. Kaveri, Intravenous immunoglobulin expands regulatory T cells in autoimmune rheumatic disease, J. Rheumatol, vol.39, pp.450-451, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02455584

H. U. Lutz, Intravenously applied IgG stimulates complement attenuation in a complement-dependent autoimmune disease at the amplifying C3 convertase level, Blood, vol.103, pp.465-472, 2004.

M. Sharma, Intravenous immunoglobulin-induced IL-33 is insufficient to mediate basophil expansion in autoimmune patients, Sci. Rep, vol.4, p.5672, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02455509

R. Raju and M. C. Dalakas, Gene expression profile in the muscles of patients with inflammatory myopathies: effect of therapy with IVIg and biological validation of clinically relevant genes, Brain, vol.128, pp.1887-1896, 2005.

J. K. Ching, mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy, Hum. Mol. Genet, vol.22, pp.1167-1179, 2013.

N. Ramachandran, VMA21 deficiency prevents vacuolar ATPase assembly and causes autophagic vacuolar myopathy, Acta Neuropathol, vol.125, pp.439-457, 2013.

S. Mukherjee, A. Karnam, M. Das, S. P. Babu, and J. Bayry, Wuchereria bancrofti filaria activates human dendritic cells and polarizes T helper 1 and regulatory T cells via toll-like receptor 4, Commun. Biol, vol.2, p.169, 2019.

C. Chalumeau, Kidney cortex cells derived from SV40 transgenic mice retain intrinsic properties of polarized proximal tubule cells, Kidney Int, vol.56, pp.559-570, 1999.