, World Health Organization, 2018.

S. Babu and T. B. Nutman, Immunology of lymphatic filariasis, Parasite Immunol, vol.36, pp.338-346, 2014.

S. Babu, Filarial lymphedema is characterized by antigen-specific Th1 and th17 proinflammatory responses and a lack of regulatory T cells, PLoS Negl. Trop. Dis, vol.3, p.420, 2009.

K. Wing and S. Sakaguchi, Regulatory T cells exert checks and balances on self tolerance and autoimmunity, Nat. Immunol, vol.11, pp.7-13, 2010.

D. A. Vignali, L. W. Collison, and C. J. Workman, How regulatory T cells work, Nat. Rev. Immunol, vol.8, pp.523-532, 2008.

S. Andre, D. F. Tough, S. Lacroix-desmazes, S. V. Kaveri, and J. Bayry, Surveillance of antigen-presenting cells by CD4+ CD25+ regulatory T cells in autoimmunity: immunopathogenesis and therapeutic implications, Am. J. Pathol, vol.174, pp.1575-1587, 2009.

M. Sharma, Regulatory T cells induce activation rather than suppression of human basophils, Sci. Immunol, vol.3, p.829, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01817714

E. Mitre, R. T. Taylor, J. Kubofcik, and T. B. Nutman, Parasite antigen-driven basophils are a major source of IL-4 in human filarial infections, J. Immunol, vol.172, pp.2439-2445, 2004.

J. Banchereau and R. M. Steinman, Dendritic cells and the control of immunity, Nature, vol.392, pp.245-252, 1998.

R. M. Steinman and J. Banchereau, Taking dendritic cells into medicine, Nature, vol.449, pp.419-426, 2007.

R. T. Semnani, Brugia malayi microfilariae induce cell death in human dendritic cells, inhibit their ability to make IL-12 and IL-10, and reduce their capacity to activate CD4+ T cells, J. Immunol, vol.171, pp.1950-1960, 2003.

R. T. Semnani, Inhibition of TLR3 and TLR4 function and expression in human dendritic cells by helminth parasites, Blood, vol.112, pp.1290-1298, 2008.

S. Mukherjee, S. Mukherjee, T. K. Maiti, S. Bhattacharya, and S. P. Sinha-babu, A novel ligand of toll-like receptor 4 from the sheath of Wuchereria bancrofti microfilaria induces proinflammatory response in macrophages, J. Infect. Dis, vol.215, pp.954-965, 2017.

S. Mukherjee, N. Joardar, and S. P. Sinha-babu, Exploring the homolog of a novel proinflammatory microfilarial sheath protein (MfP) of Wuchereria bancrofti in the adult-stage bovine filarial parasite. Setaria cervi, J. Helminthol, 2018.

N. L. O'regan, Brugia malayi microfilariae induce a regulatory monocyte/macrophage phenotype that suppresses innate and adaptive immune responses, PLoS Negl. Trop. Dis, vol.8, p.3206, 2014.

R. T. Semnani, Expanded numbers of circulating myeloid dendritic cells in patent human filarial infection reflect lower CCR1 expression, J. Immunol, vol.185, pp.6364-6372, 2010.

K. Daehnel, Filaria/Wolbachia activation of dendritic cells and development of Th1-associated responses is dependent on Toll-like receptor 2 in a mouse model of ocular onchocerciasis (river blindness), Parasite Immunol, vol.29, pp.455-465, 2007.

M. Whelan, A filarial nematode-secreted product signals dendritic cells to acquire a phenotype that drives development of Th2 cells, J. Immunol, vol.164, pp.6453-6460, 2000.

E. Stephen-victor, I. Bosschem, F. Haesebrouck, and J. Bayry, The Yin and Yang of regulatory T cells in infectious diseases and avenues to target them, Cell Microbiol, vol.19, p.12746, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02455459

S. Metenou, At homeostasis filarial infections have expanded adaptive T regulatory but not classical Th2 cells, J. Immunol, vol.184, pp.5375-5382, 2010.

S. Babu, C. P. Blauvelt, V. Kumaraswami, and T. B. Nutman, Regulatory networks induced by live parasites impair both Th1 and Th2 pathways in patent lymphatic filariasis: implications for parasite persistence, J. Immunol, vol.176, pp.3248-3256, 2006.

M. Pathak, Regulatory T-cell neutralization in mice during filariasis helps in parasite clearance by enhancing T helper type 17-mediated proinflammatory response, Immunology, vol.147, pp.190-203, 2016.

L. J. Wammes, Regulatory T cells in human lymphatic filariasis: stronger functional activity in microfilaremics, PLoS Negl. Trop. Dis, vol.6, p.1655, 2012.

E. Stephen-victor, Aspergillus fumigatus cell wall ?-(1,3)-glucan stimulates regulatory T-cell polarization by inducing PD-L1 expression on human dendritic cells, J. Infect. Dis, vol.216, pp.1281-1294, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-02455452

X. Zang, Homologues of human macrophage migration inhibitory factor from a parasitic nematode. Gene cloning, protein activity, and crystal structure, J. Biol. Chem, vol.277, pp.44261-44267, 2002.

R. M. Maizels, J. Burke, and D. A. Denham, Phosphorylcholine-bearing antigens in filarial nematode parasites: analysis of somatic extracts, in-vitro secretions and infection sera from Brugia malayi and B. pahangi, Parasite Immunol, vol.9, pp.49-66, 1987.

R. B. Lal and E. A. Ottesen, Phosphocholine epitopes on helminth and protozoal parasites and their presence in the circulation of infected human patients, Trans. R. Soc. Trop. Med. Hyg, vol.83, pp.652-655, 1989.

M. Wuhrer, Phosphocholine-containing, zwitterionic glycosphingolipids of adult Onchocerca volvulus as highly conserved antigenic structures of parasitic nematodes, Biochem. J, vol.348, issue.2, pp.417-423, 2000.

J. P. Hewitson, The secretome of the filarial parasite, Brugia malayi: proteomic profile of adult excretory-secretory products, Mol. Biochem. Parasitol, vol.160, pp.8-21, 2008.

M. M. Harnett, The phosphorycholine moiety of the filarial nematode immunomodulator ES-62 is responsible for its anti-inflammatory action in arthritis, Ann. Rheum. Dis, vol.67, pp.518-523, 2008.

U. K. Ahmed, The Carbohydrate-linked phosphorylcholine of the parasitic nematode product ES-62 modulates complement activation, J. Biol. Chem, vol.291, pp.11939-11953, 2016.

K. K. Gosink, E. R. Mann, C. Guglielmo, E. I. Tuomanen, and H. R. Masure, Role of novel choline binding proteins in virulence of Streptococcus pneumoniae, Infect. Immun, vol.68, pp.5690-5695, 2000.

B. Maestro and J. M. Sanz, Choline binding proteins from Streptococcus pneumoniae: a dual role as enzybiotics and targets for the design of new antimicrobials, Antibiotics (Basel), vol.5, p.21, 2016.

M. Yamaguchi, Identification of evolutionarily conserved virulence factor by selective pressure analysis of Streptococcus pneumoniae, Commun. Biol, vol.2, p.96, 2019.

H. S. Goodridge, Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine-containing secreted product, ES-62, J. Immunol, vol.174, pp.284-293, 2005.

H. S. Goodridge, G. Stepek, W. Harnett, and M. Harnett, Signalling mechanisms underlying subversion of the immune response by the filarial nematode secreted product ES-62, Immunology, vol.115, pp.296-304, 2005.

R. J. Eason, The helminth product, ES-62 modulates dendritic cell responses by inducing the selective autophagolysosomal degradation of TLR-transducers, as exemplified by PKC?, Sci. Rep, vol.6, p.37276, 2016.

T. Klonisch, The sheaths of Brugia microfilariae: isolation and composition, Parasitol. Res, vol.77, pp.448-451, 1991.

M. S. Maddur, Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand, Nat. Commun, vol.5, p.4092, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02455506