R. J. Dowling, M. Pollak, and N. Sonenberg, Current status and challenges associated with targeting mTOR for cancer therapy, Bio Drugs, vol.23, pp.77-91, 2009.

D. Virgilio, C. Loewith, and R. , The TOR signalling network from yeast to man, Int J Biochem Cell Biol, vol.38, pp.1476-1481, 2006.

S. Wullschleger, R. Loewith, and M. N. Hall, TOR signaling in growth and metabolism, Cell, vol.124, pp.471-484, 2006.

D. E. Martin, A. Soulard, and M. N. Hall, TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1, Cell, vol.119, pp.969-979, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01759564

K. Duvel, A. Santhanam, S. Garrett, L. Schneper, and J. R. Broach, Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast, Mol Cell, vol.11, pp.1467-1478, 2003.

J. E. Guo, B. Arndt, K. T. Schmelzle, T. Hall, and M. N. , TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway, Mol Cell, vol.8, pp.1017-1026, 2001.

J. E. Hall and M. N. , Tor signalling in bugs, brain and brawn, Nat Rev Mol Cell Biol, vol.4, pp.117-126, 2003.

S. R. Uffenbeck and J. E. Krebs, The role of chromatin structure in regulating stress-induced transcription in Saccharomyces cerevisiae, Biochem Cell Biol, vol.84, pp.477-489, 2006.

K. L. Huisinga and B. F. Pugh, A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae, Mol Cell, vol.13, pp.573-585, 2004.

T. F. Chan, J. Carvalho, L. Riles, and X. F. Zheng, A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR), Proc Natl Acad Sci U S A, vol.97, pp.13227-13232, 2000.

T. K. Neklesa and R. W. Davis, Superoxide anions regulate TORC1 and its ability to bind Fpr1:rapamycin complex, Proc Natl Acad Sci U S A, vol.105, pp.15166-15171, 2008.

M. W. Xie, J. F. Hwang, H. Hwang, S. Anand, and V. , Insights into TOR function and rapamycin response: chemical genomic profiling by using a highdensity cell array method, Proc Natl Acad Sci U S A, vol.102, pp.7215-7220, 2005.

B. Rempola, A. Kaniak, A. Migdalski, J. Rytka, and P. P. Slonimski, Functional analysis of RRD1 (YIL153w) and RRD2 (YPL152w), which encode two putative activators of the phosphotyrosyl phosphatase activity of PP2A in Saccharomyces cerevisiae, Mol Gen Genet, vol.262, pp.1081-1092, 2000.

J. Jordens, V. Janssens, S. Longin, I. Stevens, and E. Martens, The Protein Phosphatase 2A Phosphatase Activator Is a Novel Peptidyl-Prolyl cis/trans-Isomerase, J Biol Chem, vol.281, pp.6349-6357, 2006.

X. Cayla, J. Goris, J. Hermann, P. Hendrix, and R. Ozon, Isolation and characterization of a tyrosyl phosphatase activator from rabbit skeletal muscle and Xenopus laevis oocytes, Biochemistry, vol.29, pp.658-667, 1990.

X. Cayla, C. Van-hoof, M. Bosch, E. Waelkens, and J. Vandekerckhove, Molecular cloning, expression, and characterization of PTPA, a protein that activates the tyrosyl phosphatase activity of protein phosphatase 2A, J Biol Chem, vol.269, pp.15668-15675, 1994.

T. Fellner, D. H. Lackner, H. Hombauer, P. Piribauer, and I. Mudrak, A novel and essential mechanism determining specificity and activity of protein phosphatase 2A (PP2A) in vivo, Genes Dev, vol.17, pp.2138-2150, 2003.

H. Hombauer, D. Weismann, I. Mudrak, C. Stanzel, and T. Fellner, Generation of active protein phosphatase 2A is coupled to holoenzyme assembly, PLoS Biol, vol.5, p.155, 2007.

Y. Zheng and Y. Jiang, The yeast phosphotyrosyl phosphatase activator is part of the Tap42-phosphatase complexes, Mol Biol Cell, vol.16, pp.2119-2127, 2005.

J. Douville, J. David, K. M. Lemieux, L. Gaudreau, and D. Ramotar, The Saccharomyces cerevisiae phosphatase activator RRD1 is required to modulate gene expression in response to rapamycin exposure, Genetics, vol.172, pp.1369-1372, 2006.

H. Lempiainen and D. Shore, Growth control and ribosome biogenesis, Curr Opin Cell Biol, vol.21, pp.855-863, 2009.

N. Jouvet, J. Poschmann, J. Douville, and L. Bulet, Ramotar D Rrd1 isomerizes RNA polymerase II in response to rapamycin, BMC Mol Biol, vol.11, p.92

O. Kops, X. Z. Zhou, and K. P. Lu, Pin1 modulates the dephosphorylation of the RNA polymerase II C-terminal domain by yeast Fcp1, FEBS Lett, vol.513, pp.305-311, 2002.

N. Singh, Z. Ma, T. Gemmill, X. Wu, and H. Defiglio, The Ess1 prolyl isomerase is required for transcription termination of small noncoding RNAs via the Nrd1 pathway, Mol Cell, vol.36, pp.255-266, 2009.

X. Wu, A. Rossettini, and S. D. Hanes, The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae, Genetics, vol.165, pp.1687-1702, 2003.

Y. X. Xu, Y. Hirose, X. Z. Zhou, K. P. Lu, and J. L. Manley, Pin1 modulates the structure and function of human RNA polymerase II, Genes Dev, vol.17, pp.2765-2776, 2003.

Y. X. Xu and J. L. Manley, Pin1 modulates RNA polymerase II activity during the transcription cycle, Genes Dev, vol.21, pp.2950-2962, 2007.

S. Buratowski, The CTD code, Nat Struct Biol, vol.10, pp.679-680, 2003.

H. P. Phatnani and A. L. Greenleaf, Phosphorylation and functions of the RNA polymerase II CTD, Genes Dev, vol.20, pp.2922-2936, 2006.

E. J. Cho, RNA polymerase II carboxy-terminal domain with multiple connections, Exp Mol Med, vol.39, pp.247-254, 2007.

S. Egloff and S. Murphy, Cracking the RNA polymerase II CTD code, Trends Genet, vol.24, pp.280-288, 2008.

J. S. Hardwick, F. G. Kuruvilla, J. K. Tong, A. F. Shamji, and S. L. Schreiber, Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins, Proc Natl Acad Sci U S A, vol.96, pp.14866-14870, 1999.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proc Natl Acad Sci U S A, vol.95, pp.14863-14868, 1998.

G. F. Berriz, J. E. Beaver, C. Cenik, M. Tasan, and F. P. Roth, Next generation software for functional trend analysis, Bioinformatics, vol.25, pp.3043-3044, 2009.

A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-harel, and M. B. Eisen, Genomic expression programs in the response of yeast cells to environmental changes, Mol Biol Cell, vol.11, pp.4241-4257, 2000.

D. Kulish and K. Struhl, TFIIS enhances transcriptional elongation through an artificial arrest site in vivo, Mol Cell Biol, vol.21, pp.4162-4168, 2001.

D. Ramotar, E. Belanger, I. Brodeur, J. Y. Masson, and E. A. Drobetsky, A yeast homologue of the human phosphotyrosyl phosphatase activator PTPA is implicated in protection against oxidative DNA damage induced by the model carcinogen 4-nitroquinoline 1-oxide, J Biol Chem, vol.273, pp.21489-21496, 1998.

M. Aureliano and D. C. Crans, Decavanadate (V10 O28 6-) and oxovanadates: oxometalates with many biological activities, J Inorg Biochem, vol.103, pp.536-546, 2009.

R. Wysocki, P. K. Fortier, E. Maciaszczyk, M. Thorsen, and A. Leduc, Transcriptional activation of metalloid tolerance genes in Saccharomyces cerevisiae requires the AP-1-like proteins Yap1p and Yap8p, Mol Biol Cell, vol.15, pp.2049-2060, 2004.

Y. Ghavi-helm, M. Michaut, J. Acker, J. C. Aude, and P. Thuriaux, Genome-wide location analysis reveals a role of TFIIS in RNA polymerase III transcription, Genes Dev, vol.22, pp.1934-1947, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02348983

A. C. Cheung, Cramer P Structural basis of RNA polymerase II backtracking, arrest and reactivation, Nature

J. R. Rohde, R. Bastidas, R. Puria, and M. E. Cardenas, Nutritional control via Tor signaling in Saccharomyces cerevisiae, Curr Opin Microbiol, vol.11, pp.153-160, 2008.

S. B. Schawalder, M. Kabani, I. Howald, U. Choudhury, and M. Werner, Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1, Nature, vol.432, pp.1058-1061, 2004.

J. T. Wade, D. B. Hall, and K. Struhl, The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes, Nature, vol.432, pp.1054-1058, 2004.

S. Longin, J. Jordens, E. Martens, I. Stevens, and V. Janssens, An inactive protein phosphatase 2A population is associated with methylesterase and can be re-activated by the phosphotyrosyl phosphatase activator, Biochem J, vol.380, pp.111-119, 2004.

L. Riles, R. J. Shaw, M. Johnston, and D. Reines, Large-scale screening of yeast mutants for sensitivity to the IMP dehydrogenase inhibitor 6-azauracil, Yeast, vol.21, pp.241-248, 2004.

F. Exinger and F. Lacroute, 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae, Curr Genet, vol.22, pp.9-11, 1992.

R. J. Shaw and D. Reines, Saccharomyces cerevisiae transcription elongation mutants are defective in PUR5 induction in response to nucleotide depletion, Mol Cell Biol, vol.20, pp.7427-7437, 2000.

A. Morillon, N. Karabetsou, J. O'sullivan, N. Kent, and N. Proudfoot, Isw1 chromatin remodeling ATPase coordinates transcription elongation and termination by RNA polymerase II, Cell, vol.115, pp.425-435, 2003.

V. Pelechano, S. Jimeno-gonzalez, A. Rodriguez-gil, J. Garcia-martinez, and J. E. Perez-ortin, Regulon-specific control of transcription elongation across the yeast genome, PLoS Genet, vol.5, p.1000614, 2009.

A. P. Gasch, Comparative genomics of the environmental stress response in ascomycete fungi, Yeast, vol.24, pp.961-976, 2007.

B. Ren, F. Robert, J. J. Wyrick, O. Aparicio, and E. G. Jennings, Genomewide location and function of DNA binding proteins, Science, vol.290, pp.2306-2309, 2000.

R. D. Chapman, M. Heidemann, T. K. Albert, R. Mailhammer, and A. Flatley, Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7, Science, vol.318, pp.1780-1782, 2007.

A. Lloyd, K. Pratt, E. Siebrasse, M. D. Moran, and A. A. Duina, Uncoupling of the patterns of chromatin association of different transcription elongation factors by a histone H3 mutant in Saccharomyces cerevisiae, Eukaryot Cell, vol.8, pp.257-260, 2009.

G. J. Hogan, C. K. Lee, and J. D. Lieb, Cell cycle-specified fluctuation of nucleosome occupancy at gene promoters, PLoS Genet, vol.2, p.158, 2006.

A. J. Saldanha, Java Treeview-extensible visualization of microarray data, Bioinformatics, vol.20, pp.3246-3248, 2004.

A. Rufiange, P. E. Jacques, W. Bhat, F. Robert, and A. Nourani, Genome-wide replication-independent histone H3 exchange occurs predominantly at promoters and implicates H3 K56 acetylation and Asf1, Mol Cell, vol.27, pp.393-405, 2007.

J. R. Vance and T. E. Wilson, Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 39 phosphatases, Mol Cell Biol, vol.21, pp.7191-7198, 2001.

M. Aouida, N. Page, A. Leduc, M. Peter, and D. Ramotar, A Genome-Wide Screen in Saccharomyces cerevisiae Reveals Altered Transport As a Mechanism of Resistance to the Anticancer Drug Bleomycin, Cancer Res, vol.64, pp.1102-1109, 2004.

M. Ralser, H. Goehler, E. E. Wanker, H. Lehrach, and S. Krobitsch, Generation of a yeast two-hybrid strain suitable for competitive protein binding analysis, Biotechniques, vol.39, pp.165-166, 2005.