R. Daniels, Surviving the first hours in sepsis: getting the basics right (an intensivist's perspective), J. Antimicrob. Chemother, vol.66, issue.2, pp.11-23, 2011.

M. Singer, The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3), JAMA, vol.315, pp.801-810, 2016.

M. M. Parker, Profound but reversible myocardial depression in patients with septic shock, Ann. Intern. Med, vol.100, pp.483-490, 1984.

A. Rudiger and M. Singer, Mechanisms of sepsis-induced cardiac dysfunction, Critical Care Medicine, vol.35, pp.1599-1608, 2007.

F. J. Da-silva-ramos and L. C. Azevedo, Hemodynamic and perfusion end points for volemic resuscitation in sepsis, Shock, vol.34, issue.1, pp.34-39, 2010.

C. R. Torres and G. W. Hart, Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J. Biol. Chem, vol.259, pp.3308-3317, 1984.

M. Ferron, M. Denis, A. Persello, R. Rathagirishnan, and B. Lauzier, Protein O-GlcNAcylation in Cardiac Pathologies: Past, Present, Future. Front Endocrinol (Lausanne), vol.9, p.819, 2018.

L. G. Nöt, C. A. Brocks, L. Vámhidy, R. B. Marchase, and J. Chatham, Increased O-linked beta-N-acetylglucosamine levels on proteins improves survival, reduces inflammation and organ damage 24 hours after trauma-hemorrhage in rats, Crit. Care Med, vol.38, pp.562-571, 2010.

J. Hwang, Glucosamine improves survival in a mouse model of sepsis and attenuates sepsis-induced lung injury and inflammation, J. Biol. Chem, vol.294, pp.608-622, 2019.

A. Zaky, S. Deem, K. Bendjelid, and M. M. Treggiari, Characterization of cardiac dysfunction in sepsis: an ongoing challenge, Shock, vol.41, pp.12-24, 2014.

A. J. Paterson and J. E. Kudlow, Regulation of glutamine:fructose-6-phosphate amidotransferase gene transcription by epidermal growth factor and glucose, Endocrinology, vol.136, pp.2809-2816, 1995.

K. A. Robinson, M. L. Weinstein, G. E. Lindenmayer, and M. G. Buse, Effects of diabetes and hyperglycemia on the hexosamine synthesis pathway in rat muscle and liver, Diabetes, vol.44, pp.1438-1446, 1995.

G. Yehezkel, L. Cohen, A. Kliger, E. Manor, and I. Khalaila, O-linked ?-N-acetylglucosaminylation (O-GlcNAcylation) in primary and metastatic colorectal cancer clones and effect of N-acetyl-?-D-glucosaminidase silencing on cell phenotype and transcriptome, J. Biol. Chem, vol.287, pp.28755-28769, 2012.

Z. Zhang, E. P. Tan, N. J. Vandenhull, K. R. Peterson, C. Slawson et al., Expression is Sensitive to Changes in O-GlcNAc Homeostasis, Front Endocrinol (Lausanne), vol.5, p.206, 2014.

C. Slawson, Perturbations in O-linked beta-N-acetylglucosamine protein modification cause severe defects in mitotic progression and cytokinesis, J. Biol. Chem, vol.280, pp.32944-32956, 2005.

H. R. Graack, U. Cinque, and H. Kress, Functional regulation of glutamine:fructose-6-phosphate aminotransferase 1 (GFAT1) of Drosophila melanogaster in a UDP-N-acetylglucosamine and cAMP-dependent manner, Biochem. J, vol.360, pp.401-412, 2001.

J. E. Dehaven, K. A. Robinson, B. A. Nelson, and M. G. Buse, A novel variant of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle, Diabetes, vol.50, pp.2419-2424, 2001.

C. Slawson, T. Lakshmanan, S. Knapp, and G. W. Hart, A mitotic GlcNAcylation/phosphorylation signaling complex alters the posttranslational state of the cytoskeletal protein vimentin, Mol. Biol. Cell, vol.19, pp.4130-4140, 2008.

K. A. Cawcutt and S. G. Peters, Severe sepsis and septic shock: clinical overview and update on management, Mayo Clin. Proc, vol.89, pp.1572-1578, 2014.

J. Mårtensson and R. Bellomo, Sepsis-Induced Acute Kidney Injury, Crit Care Clin, vol.31, pp.649-660, 2015.

V. Champattanachai, R. B. Marchase, and J. C. Chatham, Glucosamine protects neonatal cardiomyocytes from ischemia-reperfusion injury via increased protein-associated O-GlcNAc, Am. J. Physiol, vol.292, pp.178-187, 2007.

G. A. Ngoh, L. J. Watson, H. T. Facundo, and S. P. Jones, Augmented O-GlcNAc signaling attenuates oxidative stress and calcium overload in cardiomyocytes, Amino Acids, vol.40, pp.895-911, 2011.

J. Hu, Augmented O-GlcNAc signaling via glucosamine attenuates oxidative stress and apoptosis following contrast-induced acute kidney injury in rats. Free Radic, Biol. Med, vol.103, pp.121-132, 2017.

H. N. Suh, Y. J. Lee, M. O. Kim, J. M. Ryu, and H. J. Han, Glucosamine-induced Sp1 O-GlcNAcylation ameliorates hypoxia-induced SGLT dysfunction in primary cultured renal proximal tubule cells, J. Cell. Physiol, vol.229, pp.1557-1568, 2014.

L. G. Nöt, R. B. Marchase, N. Fülöp, C. A. Brocks, and J. C. Chatham, Glucosamine administration improves survival rate after severe hemorrhagic shock combined with trauma in rats, Shock, vol.28, pp.345-352, 2007.

L. Baudoin and T. Issad, O-GlcNAcylation and Inflammation: A Vast Territory to, Explore. Front Endocrinol (Lausanne), vol.5, p.235, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01103384

L. G. Nöt, C. A. Brocks, L. Vámhidy, R. B. Marchase, and J. Chatham, Increased O-linked ?-N-acetylglucosamine levels on proteins improves survival, reduces inflammation and organ damage 24 hours after trauma-hemorrhage in rats, Crit Care Med, vol.38, pp.562-571, 2010.

W. Ertel, M. H. Morrison, A. Ayala, and I. H. Chaudry, Hypoxemia in the absence of blood loss or significant hypotension causes inflammatory cytokine release, Am. J. Physiol, vol.269, pp.160-166, 1995.

M. Keel, Endotoxin tolerance after severe injury and its regulatory mechanisms, J Trauma, vol.41, pp.437-438, 1996.

S. Turdi, Cardiac-specific overexpression of catalase attenuates lipopolysaccharide-induced myocardial contractile dysfunction: role of autophagy. Free Radic, Biol. Med, vol.53, pp.1327-1338, 2012.

S. A. Marsh, P. C. Powell, L. J. Dell'italia, and J. C. Chatham, Cardiac O-GlcNAcylation blunts autophagic signaling in the diabetic heart, Life Sci, vol.92, pp.648-656, 2013.

W. Y. Wani, O-GlcNAc regulation of autophagy and ?-synuclein homeostasis; implications for Parkinson's disease, Mol Brain, vol.10, p.32, 2017.

Y. Sun, Beclin-1-Dependent Autophagy Protects the Heart During Sepsis, 2018.

Y. Sun, Y. Cai, and Q. S. Zang, Cardiac Autophagy in Sepsis. Cells, vol.8, 2019.

I. A. Hobai, J. Edgecomb, K. Labarge, and W. S. Colucci, Dysregulation of intracellular calcium transporters in animal models of sepsis-induced cardiomyopathy, Shock, vol.43, pp.3-15, 2015.

,

J. C. Morse, Up-regulation of Intracellular Calcium Handling Underlies the Recovery of Endotoxemic Cardiomyopathy in Mice, Anesthesiology, vol.126, pp.1125-1138, 2017.

S. Yokoe, Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy, Glycobiology, vol.20, pp.1217-1226, 2010.

W. Zhu, D. El-nachef, X. Yang, D. Ledee, A. K. Olson et al., Transferase Promotes Compensated Cardiac Function and Protein Kinase A O-GlcNAcylation During Early and Established Pathological Hypertrophy From Pressure Overload, J Am Heart Assoc, vol.8, 2019.

R. J. Clark, Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation, J. Biol. Chem, vol.278, pp.44230-44237, 2003.

Y. Hu, Adenovirus-mediated overexpression of O-GlcNAcase improves contractile function in the diabetic heart, Circ. Res, vol.96, pp.1006-1013, 2005.

V. L. Johnsen, Enhanced cardiac protein glycosylation (O-GlcNAc) of selected mitochondrial proteins in rats artificially selected for low running capacity, Physiol. Genomics, vol.45, pp.17-25, 2013.

E. S. Fricovsky, Excess protein O-GlcNAcylation and the progression of diabetic cardiomyopathy, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.303, pp.689-699, 2012.

M. S. Macauley, G. E. Whitworth, A. W. Debowski, D. Chin, and D. J. Vocadlo, O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors, J. Biol. Chem, vol.280, pp.25313-25322, 2005.

M. S. Macauley and D. J. Vocadlo, Increasing O-GlcNAc levels: An overview of small-molecule inhibitors of O-GlcNAcase, Biochim. Biophys. Acta, vol.1800, pp.107-121, 2010.

D. Rittirsch, M. S. Huber-lang, M. A. Flierl, and P. A. Ward, Immunodesign of experimental sepsis by cecal ligation and puncture, Nat Protoc, vol.4, pp.31-36, 2009.

N. Merlet, Increased beta2-adrenoceptors in doxorubicin-induced cardiomyopathy in rat, PLoS ONE, vol.8, p.64711, 2013.