B. Allen, E. Ingram, M. Takao, M. J. Smith, R. Jakes et al., Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301s tau protein, J Neurosci, vol.22, pp.9340-9351, 2002.

Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Ann Stat, vol.29, pp.1165-1188, 2001.

A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, Integrating singlecell transcriptomic data across different conditions, technologies, and species, Nat Biotechnol, vol.36, pp.411-420, 2018.

O. Butovsky, M. P. Jedrychowski, C. S. Moore, R. Cialic, A. J. Lanser et al., Identification of a unique TGF-b -dependent molecular and functional signature in microglia, Nat Neurosci, vol.17, pp.131-143, 2014.

R. Cannoodt, W. Saelens, D. Sichien, S. Tavernier, S. Janssens et al., SCORPIUS improves trajectory inference and identifies novel modules in dendritic cell development, 2016.

G. Chételat, L. Joie, R. Villain, N. Perrotin, A. De-la-sayette et al., Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer's disease, Neuroimage Clin, vol.2, pp.356-365, 2013.

D. Strooper, B. Karran, and E. , The cellular phase of Alzheimer's disease, Cell, vol.164, pp.603-615, 2016.

A. Deczkowska, H. Keren-shaul, A. Weiner, M. Colonna, M. Schwartz et al., Perspective disease-associated microglia: a universal immune sensor of neurodegeneration, Cell, vol.173, pp.1073-1081, 2018.

E. Eden, R. Navon, I. Steinfeld, D. Lipson, and Z. Yakhini, GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists, BMC Bioinformatics, vol.10, p.48, 2009.

A. G. Efthymiou and A. M. Goate, Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk, Mol Neurodegener, vol.12, p.43, 2017.

V. Escott-price, R. Sims, C. Bannister, D. Harold, M. Vronskaya et al., Common polygenic variation enhances risk prediction for Alzheimer's disease, Brain, vol.138, pp.3673-3684, 2015.

V. Escott-price, A. J. Myers, M. Huentelman, and J. Hardy, Polygenic risk score analysis of pathologically confirmed Alzheimer disease, Ann Neurol, vol.82, pp.311-314, 2017.

B. A. Friedman, K. Srinivasan, G. Ayalon, W. J. Meilandt, H. Lin et al., Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzhiemer's disease not evident in mouse models, Cell Rep, vol.22, pp.832-847, 2018.

M. Gatz, C. A. Reynolds, L. Fratiglioni, B. Johansson, J. A. Mortimer et al., Role of genes and environments for explaining Alzheimer's disease, Arch Gen Psychiatry, vol.63, pp.168-174, 2006.

E. Gjoneska, A. R. Pfenning, H. Mathys, G. Quon, A. Kundaje et al., Conserved epigenomic signals in mice and humans reveal immune basis of Alzheimer's disease, Nature, vol.518, pp.365-369, 2015.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists, Nucleic Acids Res, vol.37, pp.1-13, 2009.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, vol.4, pp.44-57, 2009.

K. Huang, E. Marcora, A. A. Pimenova, D. Narzo, A. F. Kapoor et al., A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease, Nat Neurosci, vol.20, pp.1052-1061, 2017.

H. Imrichová, G. Hulselmans, Z. K. Atak, D. Potier, and S. Aerts, ) i-cisTarget 2015 update: generalized cis-regulatory enrichment analysis in human, mouse and fly, Nucleic Acids Res, vol.43, pp.57-64, 2015.

C. Ising, C. Venegas, S. Zhang, H. Scheiblich, S. V. Schmidt et al., , p.3, 2019.

, Nature, vol.575, pp.669-673

H. Keren-shaul, A. Spinrad, A. Weiner, O. Matcovitch-natan, R. Dvir-szternfeld et al., A unique microglia type associated with restricting development of Alzheimer's disease, Cell, vol.169, issue.e17, pp.1276-1290, 2017.

T. J. Kipps, F. K. Stevenson, C. J. Wu, C. M. Croce, G. Packham et al., Chronic lymphocytic leukaemia, Nat Rev Dis Prim, vol.3, p.16096, 2017.

H. Konishi and H. Kiyama, Microglial TREM2/DAP12 signaling: a doubleedged sword in neural diseases, Front Cell Neurosci, vol.12, p.206, 2018.

S. Krasemann, C. Madore, R. Cialic, C. Baufeld, N. Calcagno et al., The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases, Immunity, vol.47, pp.566-581, 2017.

P. Langfelder and S. Horvath, WGCNA: an R package for weighted correlation network analysis, BMC Bioinformatics, vol.9, p.559, 2008.

P. Langfelder, B. Zhang, and S. Horvath, Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R, Bioinformatics, vol.24, pp.719-720, 2008.

Y. Liao, G. K. Smyth, and W. Shi, featureCounts: an efficient general purpose program for assigning sequence reads to genomic features, Bioinformatics, vol.30, pp.923-930, 2014.

A. C. Lo, E. Iscru, D. Blum, I. Tesseur, Z. Callaerts-vegh et al., Amyloid and tau neuropathology differentially affect prefrontal synaptic plasticity and cognitive performance in mouse models of Alzheimer's disease, J Alzheimer's Dis, vol.37, pp.109-125, 2013.

R. Mancuso, G. Fryatt, M. Cleal, J. Obst, E. Pipi et al., CSF1R inhibitor JNJ-40346527 attenuates microglial proliferation and neurodegeneration in P301S mice, Brain, vol.142, pp.3243-3264, 2019.

R. Mancuso, J. Van-den-daele, N. Fattorelli, L. Wolfs, S. Balusu et al., Stem-cell-derived human microglia transplanted in mouse brain to study human disease, Nat Neurosci, vol.22, pp.2111-2116, 2019.

R. E. Marioni, S. E. Harris, A. F. Mcrae, Q. Zhang, S. P. Hagenaars et al., GWAS on family history of Alzheimer's disease, vol.8, p.99, 2018.

L. H. Martens, J. Zhang, S. J. Barmada, P. Zhou, S. Kamiya et al., Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury, J Clin Invest, vol.122, pp.3955-3959, 2012.

M. Matarin, D. A. Salih, J. Hardy, F. A. Edwards, M. Matarin et al., Resource a genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology resource a genome-wide geneexpression analysis and database in transgenic mice during development of amyloid or tau pathology, Cell Rep, vol.10, pp.633-644, 2015.

J. H. Moore, A global view of epistasis, Nat Genet, vol.37, pp.13-14, 2005.

J. H. Moore and S. M. Williams, Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis, BioEssays, vol.27, pp.637-646, 2005.

V. K. Mootha, C. M. Lindgren, K. Eriksson, A. Subramanian, S. Sihag et al., PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat Genet, vol.34, pp.267-273, 2003.

F. Nimmerjahn and J. V. Ravetch, Fcc receptors as regulators of immune responses, Nat Rev Immunol, vol.8, pp.34-47, 2008.

D. Paris, G. Ait-ghezala, C. Bachmeier, G. Laco, D. Beaulieu-abdelahad et al., The spleen tyrosine kinase (Syk) regulates, 2014.

, Alzheimer amyloid-b production and Tau hyperphosphorylation, J Biol Chem, vol.289, pp.33927-33944

M. Pirooznia, T. Wang, D. Avramopoulos, D. Valle, G. Thomas et al., SynaptomeDB: an ontology-based knowledgebase for synaptic genes, Bioinformatics, vol.28, pp.897-899, 2012.

S. Prokop, K. R. Miller, S. R. Labra, R. M. Pitkin, K. Hoxha et al., Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer's disease patient brain samples, Acta Neuropathol, vol.138, pp.613-630, 2019.

S. M. Purcell, N. R. Wray, J. L. Stone, P. M. Visscher, M. C. O'donovan et al., Common polygenic variation contributes to risk of schizophrenia and bipolar disorder, Nature, vol.460, pp.748-752, 2009.

R. Radde, T. Bolmont, S. A. Kaeser, J. Coomaraswamy, D. Lindau et al., Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology, EMBO Rep, vol.7, pp.940-946, 2006.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, e47 ª 2020 The Authors EMBO Molecular Medicine, vol.43, 2015.

C. Sala-frigerio, L. Wolfs, N. Fattorelli, V. H. Perry, M. Fiers et al., The major risk factors for Alzheimer's disease: age, sex, and genes modulate the microglia response to Ab plaques, Cell Rep, vol.27, pp.1293-1306, 2019.

D. A. Salih, S. Bayram, S. Guelfi, R. H. Reynolds, M. Shoai et al., Genetic variability in response to amyloid beta deposition influences Alzheimer's disease risk, Brain Commun, vol.1, p.22, 2019.

J. Satoh, N. Asahina, S. Kitano, and Y. Kino, A comprehensive profile of ChIP-Seq-Based PU.1/Spi1 target genes in microglia, Gene Regul Syst Biol, vol.8, 2014.

A. J. Savitz and D. I. Meyer, 180-kD ribosome receptor is essential for both ribosome binding and protein translocation, J Cell Biol, vol.120, pp.853-863, 1993.

M. L. Scattoni, L. Gasparini, E. Alleva, M. Goedert, G. Calamandrei et al., Early behavioural markers of disease in P301S tau transgenic mice, Behav Brain Res, vol.208, pp.250-257, 2010.

K. Schindowski, A. Bretteville, K. Leroy, S. Bégard, J. Brion et al., Alzheimer's disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits, Am J Pathol, vol.169, pp.599-616, 2006.

Y. Shi, K. Yamada, S. A. Liddelow, S. T. Smith, L. Zhao et al., ApoE4 markedly exacerbates taumediated neurodegeneration in a mouse model of tauopathy, Nature, vol.549, pp.523-527, 2017.

Y. Shi, M. Manis, J. Long, K. Wang, P. M. Sullivan et al., Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model, J Exp Med, vol.216, pp.2546-2561, 2019.

A. Sierksma, A. Lu, E. Salta, E. Vanden-eynden, Z. Callaerts-vegh et al., Deregulation of neuronal miRNAs induced by amyloid-b or TAU pathology, Mol Neurodegener, vol.13, p.54, 2018.

M. R. Van-der-sijde, A. Ng, and J. Fu, Systems genetics: from GWAS to disease pathways, Biochim Biophys Acta -Mol Basis Dis, vol.1842, pp.1903-1909, 2014.

K. Srinivasan, B. Friedman, A. Etxeberria, M. Huntley, M. Van-der-brug et al., Alzheimer's patient brain myeloid cells exhibit enhanced aging and unique transcriptional activation, 2019.

T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi et al., Comprehensive integration of single-cell data, Cell, vol.177, pp.1888-1902, 2019.

S. D. Styren, R. L. Hamilton, G. C. Styren, and W. E. Klunk, X-34, a fluorescent derivative of Congo red: a novel histochemical stain for Alzheimer's disease pathology, J Histochem Cytochem, vol.48, pp.1223-1232, 2000.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc Natl Acad Sci, vol.102, pp.15545-15550, 2005.

K. Taguchi, H. D. Yamagata, W. Zhong, K. Kamino, H. Akatsu et al., Identification of hippocampus-related candidate genes for Alzheimer's disease, Ann Neurol, vol.57, pp.585-588, 2005.

C. Trapnell, L. Pachter, and S. L. Salzberg, TopHat: discovering splice junctions with RNA-Seq, Bioinformatics, vol.25, pp.1105-1111, 2009.

J. D. Ulrich, T. K. Ulland, T. E. Mahan, S. Nyström, K. P. Nilsson et al., ApoE facilitates the microglial response to amyloid plaque pathology, J Exp Med, vol.215, pp.1047-1058, 2018.

C. Venegas, S. Kumar, B. S. Franklin, T. Dierkes, R. Brinkschulte et al., Microgliaderived ASC specks cross-seed amyloid-b in Alzheimer's disease, Nature, vol.552, pp.355-361, 2017.

J. Verheijen and K. Sleegers, Understanding Alzheimer disease at the interface between genetics and transcriptomics, Trends Genet, vol.34, pp.434-447, 2018.

M. Wang, Y. Zhao, and B. Zhang, Efficient test and visualization of multi-set intersections, Sci Rep, vol.5, p.16923, 2015.

K. Wirz, K. Bossers, A. Stargardt, W. Kamphuis, D. F. Swaab et al., Cortical beta amyloid protein triggers an immune response, but no synaptic changes in the APPswe/PS1dE9 Alzheimer's disease mouse model, Neurobiol Aging, vol.34, pp.1328-1342, 2013.

F. A. Wolf, P. Angerer, and F. J. Theis, SCANPY: large-scale single-cell gene expression data analysis, Genome Biol, vol.19, p.15, 2018.

Y. Yoshiyama, M. Higuchi, B. Zhang, S. M. Huang, N. Iwata et al., Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model, Neuron, vol.53, pp.337-351, 2007.

K. R. Zahs and K. H. Ashe, Too much good news' -are Alzheimer mouse models trying to tell us how to prevent, not cure, Trends Neurosci, vol.33, pp.381-389, 2010.

A. Zeisel, A. Manchado, S. Codeluppi, P. Lönnerberg, L. Manno et al., Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq, Science, vol.347, pp.1138-1142, 2015.

D. R. Zerbino, P. Achuthan, W. Akanni, M. R. Amode, D. Barrell et al., Nucleic Acids Res, vol.46, pp.754-761, 2018.

B. Zhang and S. Horvath, A general framework for weighted gene coexpression network analysis, Stat Appl Genet Mol Biol, vol.4, p.17, 2005.

B. Zhang, C. Gaiteri, L. Bodea, Z. Wang, J. Mcelwee et al., Integrated systems approach identifies genetic nodes and networks in late-onset Alzheimer's disease, Cell, vol.153, pp.707-720, 2013.

, License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited