R. Tehranchi, R. Invernizzi, A. Grandien, B. Zhivotovsky, B. Fadeel et al., Aberrant mitochondrial iron distribution and maturation arrest characterize early erythroid precursors in low-risk myelodysplastic syndromes, Blood, vol.106, pp.247-253, 2005.

E. Gyan, E. Frisan, O. Beyne-rauzy, J. Deschemin, C. Pierre-eugene et al., Spontaneous and Fas-induced apoptosis of low-grade MDS erythroid precursors involves the endoplasmic reticulum, Leukemia, vol.22, pp.1864-1873, 2008.

Y. Zhu, X. Li, C. Chang, F. Xu, Q. He et al., SF3B1-mutated myelodysplastic syndrome with ring sideroblasts harbors more severe iron overload and corresponding over-erythropoiesis, Leuk. Res, vol.44, pp.8-16, 2016.

L. De-swart, C. Reiniers, T. Bagguley, C. Van-marrewijk, D. Bowen et al., Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes, Haematologica, vol.103, pp.69-79, 2018.

K. Yoshida, M. Sanada, Y. Shiraishi, D. Nowak, Y. Nagata et al., Frequent pathway mutations of splicing machinery in myelodysplasia, Nature, vol.478, pp.64-69, 2011.

E. Papaemmanuil, M. Cazzola, J. Boultwood, L. Malcovati, P. Vyas et al., Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium, Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts, N. Engl. J. Med, vol.365, pp.1384-1395, 2011.

F. Damm, O. Kosmider, V. Gelsi-boyer, A. Renneville, N. Carbuccia et al.,

, Groupe Francophone des Myélodysplasies, Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes, Blood, vol.119, pp.3211-3218, 2012.

S. A. Mian, K. Rouault-pierre, A. E. Smith, T. Seidl, I. Pizzitola et al., SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment, Nat. Commun, vol.6, p.10004, 2015.

V. Chesnais, M. Arcangeli, C. Delette, A. Rousseau, H. Guermouche et al., Architectural and functional heterogeneity of hematopoietic stem/progenitor cells in non-del(5q) myelodysplastic syndromes, Blood, vol.129, pp.484-496, 2017.

T. Mortera-blanco, M. Dimitriou, P. S. Woll, M. Karimi, E. Elvarsdottir et al., SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells, vol.130, pp.881-890, 2017.

R. B. Darman, M. Seiler, A. A. Agrawal, K. H. Lim, S. Peng et al., Cancer-associated SF3B1 hotspot mutations induce cryptic 3? splice site selection through use of a different branch point, Cell Rep, vol.13, pp.1033-1045, 2015.

E. A. Obeng, R. J. Chappell, M. Seiler, M. C. Chen, D. R. Campagna et al., Physiologic expression of Sf3b1(K700E) causes impaired erythropoiesis, aberrant splicing, and sensitivity to therapeutic spliceosome modulation, Cancer Cell, vol.30, pp.404-417, 2016.

S. Alsafadi, A. Houy, A. Battistella, T. Popova, M. Wassef et al., Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage, Nat. Commun, vol.7, p.10615, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01272099

L. Wang, A. N. Brooks, J. Fan, Y. Wan, R. Gambe et al., Transcriptomic characterization of SF3B1 mutation reveals its pleiotropic effects in chronic lymphocytic leukemia, Cancer Cell, vol.30, pp.750-763, 2016.

A. Pellagatti, R. N. Armstrong, V. Steeples, E. Sharma, E. Repapi et al., Impact of spliceosome mutations on RNA splicing in myelodysplasia: Dysregulated genes/pathways and clinical associations, Blood, vol.132, pp.1225-1240, 2018.

Y. Shiozawa, L. Malcovati, A. Gallì, A. Sato-otsubo, K. Kataoka et al., Aberrant splicing and defective mRNA production induced by somatic spliceosome mutations in myelodysplasia, Nat. Commun, vol.9, p.3649, 2018.

V. Santini, D. Girelli, A. Sanna, N. Martinelli, L. Duca et al., Hepcidin levels and their determinants in different types of myelodysplastic syndromes, PLOS ONE, vol.6, p.23109, 2011.

I. Ambaglio, L. Malcovati, E. Papaemmanuil, C. M. Laarakkers, M. G. Porta et al., Inappropriately low hepcidin levels in patients with myelodysplastic syndrome carrying a somatic mutation of SF3B1, Haematologica, vol.98, pp.420-423, 2013.

D. A. Weinstein, C. N. Roy, M. D. Fleming, M. F. Loda, J. I. Wolfsdorf et al., Inappropriate expression of hepcidin is associated with iron refractory anemia: Implications for the anemia of chronic disease, Blood, vol.100, pp.3776-3781, 2002.

G. Nicolas, C. Chauvet, L. Viatte, J. L. Danan, X. Bigard et al., The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation, J. Clin. Invest, vol.110, pp.1037-1044, 2002.

E. Nemeth, E. V. Valore, M. Territo, G. Schiller, A. Lichtenstein et al., Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein, Blood, vol.101, pp.2461-2463, 2003.

M. Pak, M. A. Lopez, V. Gabayan, T. Ganz, and S. Rivera, Suppression of hepcidin during anemia requires erythropoietic activity, Blood, vol.108, pp.3730-3735, 2006.

L. Malcovati, E. Papaemmanuil, D. T. Bowen, J. Boultwood, M. G. Porta et al., Cazzola; Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium and of the Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative, Clinical significance of SF3B1 mutations in myelodysplastic syndromes and myelodysplastic/myeloproliferative neoplasms, Blood, vol.118, pp.6239-6246, 2011.

T. Tanno, N. V. Bhanu, P. A. Oneal, S. Goh, P. Staker et al., High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin, Nat. Med, vol.13, pp.1096-1101, 2007.

T. Tanno, P. Porayette, O. Sripichai, S. Noh, C. Byrnes et al., Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells, Blood, vol.114, pp.181-186, 2009.

L. Kautz, G. Jung, E. V. Valore, S. Rivella, E. Nemeth et al., Identification of erythroferrone as an erythroid regulator of iron metabolism, Nat. Genet, vol.46, pp.678-684, 2014.

T. Ganz, G. Jung, A. Naeim, Y. Ginzburg, Z. Pakbaz et al., Immunoassay for human serum erythroferrone, Blood, vol.130, pp.1243-1246, 2017.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

Q. Zhou, A. Derti, D. Ruddy, D. Rakiec, I. Kao et al., A chemical genetics approach for the functional assessment of novel cancer genes, Cancer Res, vol.75, pp.1949-1958, 2015.

S. Park, O. Kosmider, F. Maloisel, B. Drenou, N. Chapuis et al., Dyserythropoiesis evaluated by the RED score and hepcidin:ferritin ratio predicts response to erythropoietin in lower-risk myelodysplastic syndromes, Haematologica, vol.104, pp.497-504, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02351432

F. Damm, E. Mylonas, A. Cosson, K. Yoshida, V. D. Valle et al., Acquired initiating mutations in early hematopoietic cells of CLL patients, Cancer Discov, vol.4, pp.1088-1101, 2014.

H. Dolatshad, A. Pellagatti, F. G. Liberante, M. Llorian, E. Repapi et al., Cryptic splicing events in the iron transporter ABCB7 and other key target genes in SF3B1-mutant myelodysplastic syndromes, Leukemia, vol.30, pp.2322-2331, 2016.

V. Chesnais, A. Renneville, A. Toma, J. Lambert, M. Passet et al., Groupe Francophone des Myélodysplasies, Effect of lenalidomide treatment on clonal architecture of myelodysplastic syndromes without 5q deletion, Blood, vol.127, pp.749-760, 2016.

A. Toma, O. Kosmider, S. Chevret, J. Delaunay, A. Stamatoullas et al., Lenalidomide with or without erythropoietin in transfusion-dependent erythropoiesis-stimulating agent-refractory lower-risk MDS without 5q deletion, Leukemia, vol.30, pp.897-905, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01321412

Y. Shiozawa, S. Sato-otsubo, A. Gallì, K. Yoshida, T. Yoshizato et al., Comprehensive analysis of aberrant RNA splicing in myelodysplastic syndromes, Blood, vol.124, p.826, 2014.

C. Cretu, J. Schmitzová, A. Ponce-salvatierra, O. Dybkov, E. I. De-laurentiis et al., Molecular architecture of SF3b and structural consequences of its cancer-related mutations, Mol. Cell, vol.64, pp.307-319, 2016.

M. Nikpour, C. Scharenberg, A. Liu, S. Conte, M. Karimi et al., The transporter ABCB7 is a mediator of the phenotype of acquired refractory anemia with ring sideroblasts, Leukemia, vol.27, pp.889-896, 2013.

V. Quesada, L. Conde, N. Villamor, G. R. Ordóñez, P. Jares et al., Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia, Nat. Genet, vol.44, pp.47-52, 2011.

D. Gentien, O. Kosmider, F. Nguyen-khac, B. Albaud, A. Rapinat et al., A common alternative splicing signature is associated with SF3B1 mutations in malignancies from different cell lineages, Leukemia, vol.28, pp.1355-1357, 2014.

M. M. Seldin, S. Y. Tan, and G. W. Wong, Metabolic function of the CTRP family of hormones, Rev. Endocr. Metab. Disord, vol.15, pp.111-123, 2014.

S. J. Brada, J. T. De-wolf, D. Hendriks, H. Louwes, E. Van-den et al., Characterization of the erythropoiesis in myelodysplasia by means of ferrokinetic studies, in vitro erythroid colony formation and soluble transferrin receptor, Leukemia, vol.12, pp.340-345, 1998.

G. Metzgeroth, P. L. Rosée, C. Kuhn, B. Schultheis, A. Dorn-beineke et al., The soluble transferrin receptor in dysplastic erythropoiesis in myelodysplastic syndrome, Eur. J. Haematol, vol.79, pp.8-16, 2007.

D. R. Ashby, D. P. Gale, M. Busbridge, K. G. Murphy, N. D. Duncan et al., Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin, Haematologica, vol.95, pp.505-508, 2010.

H. Tamary, H. Shalev, G. Perez-avraham, M. Zoldan, I. Levi et al., Elevated growth differentiation factor 15 expression in patients with congenital dyserythropoietic anemia type I, Blood, vol.112, pp.5241-5244, 2008.

G. Nicolas, L. Viatte, D. Lou, M. Bennoun, C. Beaumont et al., Constitutive hepcidin expression prevents iron overload in a mouse model of hemochromatosis, Nat. Genet, vol.34, pp.97-101, 2003.

E. Nemeth, M. S. Tuttle, J. Powelson, M. B. Vaughn, A. Donovan et al., Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization, Science, vol.306, pp.2090-2093, 2004.

R. Cui, R. P. Gale, G. Zhu, Z. Xu, T. Qin et al., Serum iron metabolism and erythropoiesis in patients with myelodysplastic syndrome not receiving RBC transfusions, Leuk. Res, vol.38, pp.545-550, 2014.

S. Pasricha, D. M. Frazer, D. K. Bowden, and G. J. Anderson, Transfusion suppresses erythropoiesis and increases hepcidin in adult patients with ?-thalassemia major: A longitudinal study, Blood, vol.122, pp.124-133, 2013.

L. Malcovati, M. Karimi, E. Papaemmanuil, I. Ambaglio, M. Jädersten et al., SF3B1 mutation identifies a distinct subset of myelodysplastic syndrome with ring sideroblasts, Blood, vol.126, pp.233-241, 2015.

M. Cazzola, G. Barosi, P. G. Gobbi, R. Invernizzi, A. Riccardi et al., Natural history of idiopathic refractory sideroblastic anemia, Blood, vol.71, pp.305-312, 1988.

N. Gattermann, C. Finelli, M. D. Porta, P. Fenaux, M. Stadler et al., Hematologic responses to deferasirox therapy in transfusion-dependent patients with myelodysplastic syndromes, Haematologica, vol.97, pp.1364-1371, 2012.

A. F. List, M. R. Baer, D. P. Steensma, A. Raza, J. Esposito et al., Deferasirox reduces serum ferritin and labile plasma iron in RBC transfusion-dependent patients with myelodysplastic syndrome, J. Clin. Oncol, vol.30, pp.2134-2139, 2012.

M. Meunier, S. Ancelet, C. Lefebvre, J. Arnaud, C. Garrel et al., Reactive oxygen species levels control NF-?B activation by low dose deferasirox in erythroid progenitors of low risk myelodysplastic syndromes, Oncotarget, vol.8, pp.105510-105524, 2017.

U. Platzbecker, U. Germing, K. S. Götze, P. Kiewe, K. Mayer et al., Luspatercept for the treatment of anaemia in patients with lower-risk myelodysplastic syndromes (PACE-MDS): A multicentre, open-label phase 2 dose-finding study with long-term extension study, Lancet Oncol, vol.18, pp.1338-1347, 2017.

R. N. Suragani, S. M. Cadena, S. M. Cawley, D. Sako, D. Mitchell et al., Transforming growth factor-? superfamily ligand trap ACE-536 corrects anemia by promoting late-stage erythropoiesis, Nat. Med, vol.20, pp.408-414, 2014.

M. Dussiot, T. T. Maciel, A. Fricot, C. Chartier, O. Negre et al., An activin receptor IIA ligand trap corrects ineffective erythropoiesis in ?-thalassemia, Nat. Med, vol.20, pp.398-407, 2014.

S. Gardenghi, P. Ramos, M. F. Marongiu, L. Melchiori, L. Breda et al., Hepcidin as a therapeutic tool to limit iron overload and improve anemia in ?-thalassemic mice, J. Clin. Invest, vol.120, pp.4466-4477, 2010.

J. J. Welch, J. A. Watts, C. R. Vakoc, Y. Yao, H. Wang et al., Global regulation of erythroid gene expression by transcription factor GATA-1, Blood, vol.104, pp.3136-3147, 2004.

P. Roepstorff and J. Fohlman, Proposal for a common nomenclature for sequence ions in mass spectra of peptides, Biomed. Mass Spectrom, vol.11, p.601, 1984.

T. Lefebvre, N. Dessendier, D. Houamel, N. Ialy-radio, C. Kannengiesser et al., LC-MS/MS method for hepcidin-25 measurement in human and mouse serum: Clinical and research implications in iron disorders, Clin. Chem. Lab. Med, vol.53, pp.1557-1567, 2015.

, INSERM on November, vol.19, 2019.

, Kannengiesser (Service de Génétique, Hôpital Bichat Paris) for providing samples

F. Letourneur-(genom, &. Ic, I. Cochin, ). , S. ;. Zaroili et al., ) for providing the G1E-ER4 cell line and expert comments. Funding: This study was funded by INSERM, by the Institut National du Cancer INCa PLBio 2015 (INCa_9290), by INCa and the Direction Générale de l'Offre de Soins (DGOS) of the French Ministry of Social Affairs and Health through the Programme Hospitalier de Recherche Clinique, p.4

D. C. , A. A. , C. L. , G. J. , F. G. et al., L.K. received support from ANR-16-ACHN-0002-01 and from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement no. 715491). T.G. received funding from the NIH by R01 DK 065029 (and the UCLA Center for Accelerated Innovation, under NIH grant U54HL119893, Palazzolo), INCa-DGOS_5480), and by the Site de Recherche Intégrée sur le Cancer (SIRIC) CAncer Research for PErsonalized Medicine (CARPEM)

A. R. , S. W. , and A. K. , recorded patient clinical data

A. H. , D. R. , A. B. , N. C. , and I. ,

A. T. , S. P. , D. B. , H. P. , L. A. et al.,

S. , performed statistical analyses and reviewed the manuscript

F. G. , N. D. , S. A. , Z. K. , H. P. et al.,

M. F. and O. , designed the study, analyzed the data, and supervised the work

M. F. , L. K. , E. F. N-;-e.n.-;-m, O. K. , L. K. et al., are inventors on a patent application on variant ERFE. The other authors declare that they have no competing interests. Data and materials availability: RNA-seq data are available in the Gene Expression Omnibus (GEO) repository (accession number GSE132836). Material transfer agreement with H3 Biomedicine Inc. (S. Buonamici) is required to obtain synthetic full-length SF3B1 WT or mutant SF3B1 K700E cDNAs. The human erythroferrone assay is available from Intrinsic LifeSciences, wrote the manuscript. Competing interests, 2018.

, , 2019.

S. Bondu, A. Alary, C. Lefèvre, A. Houy, G. Jung et al., A variant erythroferrone disrupts iron homeostasis in SF3B1-mutated myelodysplastic syndrome, Sci. Transl. Med, vol.11, p.5467, 2019.
URL : https://hal.archives-ouvertes.fr/inserm-02449216

, INSERM on November, vol.19, 2019.

, This article cites 60 articles, 26 of which you can access for free