B. Engelhardt, P. Vajkoczy, and R. O. Weller, The movers and shapers in immune privilege of the CNS, Nat. Immunol, vol.18, pp.123-131, 2017.

B. Obermeier, A. Verma, and R. M. Ransohoff, The blood-brain barrier, Handb. Clin. Neurol, vol.133, pp.39-59, 2016.

Z. Zhao, A. R. Nelson, C. Betsholtz, and B. V. Zlokovic, Establishment and dysfunction of the blood-brain barrier, Cell, vol.163, pp.1064-1078, 2015.

B. Ajami, Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models, Nat. Neurosci, vol.21, pp.541-551, 2018.

J. I. Alvarez, Focal disturbances in the blood-brain barrier are associated with formation of neuroinflammatory lesions, Neurobiol. Dis, vol.74, pp.14-24, 2015.

I. Kleffner, Diagnostic criteria for Susac syndrome, J. Neurol. Neurosurg. Psychiatry, vol.87, pp.1287-1295, 2016.

J. Dorr, Characteristics of Susac syndrome: a review of all reported cases, Nat. Rev. Neurol, vol.9, pp.307-316, 2013.

J. O. Susac, J. M. Hardman, and J. B. Selhorst, Microangiopathy of the brain and retina, Neurology, vol.29, pp.313-316, 1979.

T. A. Hardy, Brain histopathology in three cases of Susac's syndrome: implications for lesion pathogenesis and treatment, J. Neurol. Neurosurg. Psychiatry, vol.86, pp.582-584, 2015.

C. M. Magro, J. C. Poe, M. Lubow, and J. O. Susac, Susac syndrome: an organspecific autoimmune endotheliopathy syndrome associated with antiendothelial cell antibodies, Am. J. Clin. Pathol, vol.136, pp.903-912, 2011.

J. O. Susac, R. A. Egan, R. M. Rennebohm, and M. Lubow, Susac's syndrome: 1975-2005 microangiopathy/autoimmune endotheliopathy, J. Neurol. Sci, vol.257, pp.270-272, 2007.

S. Jarius, Clinical, paraclinical and serological findings in Susac syndrome: an international multicenter study, J. Neuroinflammation, vol.11, p.46, 2014.

I. Kleffner, Susac syndrome treated with subcutaneous immunoglobulin, Eur. Neurol, vol.71, pp.89-92, 2013.

I. Kleffner, E. B. Ringelstein, N. Stupp, T. U. Niederstadt, and P. Young, Susac's syndrome: effective combination of immunosuppression and antiplatelet treatment, J. Neurol. Neurosurg. Psychiatry, vol.77, p.1335, 2006.

R. M. Rennebohm, R. A. Egan, and J. O. Susac, Treatment of Susac's syndrome, Curr. Treat. Options Neurol, vol.10, pp.67-74, 2008.

D. P. Agamanolis, C. Klonk, K. Bigley, and R. M. Rennebohm, Neuropathological findings in Susac syndrome: an autopsy report, J. Neuropathol. Exp. Neurol, vol.78, pp.515-519, 2019.

J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, Multiple sclerosis, N. Engl. J. Med, vol.343, pp.938-952, 2000.

D. S. Reich, C. F. Lucchinetti, and P. A. Calabresi, Multiple sclerosis, N. Engl. J. Med, vol.378, pp.169-180, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01480156

T. Schneider-hohendorf, VLA-4 blockade promotes differential routes into human CNS involving PSGL-1 rolling of T cells and MCAM-adhesion of TH17 cells, J. Exp. Med, vol.211, pp.1833-1846, 2014.

Y. D. Mahnke, T. M. Brodie, F. Sallusto, M. Roederer, and E. Lugli, The who's who of T-cell differentiation: human memory T-cell subsets, Eur. J. Immunol, vol.43, pp.2797-2809, 2013.

C. Pannetier, The sizes of the CDR3 hypervariable regions of the murine T-cell receptor beta chains vary as a function of the recombined germ-line segments, Proc. Natl Acad. Sci. USA, vol.90, pp.4319-4323, 1993.

H. Robins, Ultra-sensitive detection of rare T cell clones, J. Immunol. Methods, vol.375, pp.14-19, 2012.

H. S. Robins, Comprehensive assessment of T-cell receptor beta-chain diversity in alphabeta T cells, Blood, vol.114, pp.4099-4107, 2009.

T. Schneider-hohendorf, CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing, Nat. Commun, vol.7, p.11153, 2016.

H. Li, C. Ye, G. Ji, and J. Han, Determinants of public T cell responses, Cell Res, vol.22, pp.33-42, 2012.

L. Dong, P. Li, T. Oenema, C. L. Mcclurkan, and D. M. Koelle, Public TCR use by herpes simplex virus-2-specific human CD8 CTLs, J. Immunol, vol.184, pp.3063-3071, 2010.

R. O. Emerson, Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire, Nat. Genet, vol.49, pp.659-665, 2017.

A. Lossius, High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells, Eur. J. Immunol, vol.44, pp.3439-3452, 2014.

V. Venturi, TCR beta-chain sharing in human CD8+ T cell responses to cytomegalovirus and EBV, J. Immunol, vol.181, pp.7853-7862, 2008.

A. Madi, T-cell receptor repertoires share a restricted set of public and abundant CDR3 sequences that are associated with self-related immunity

, Genome Res, vol.24, pp.1603-1612, 2014.

D. Marco and M. , Unveiling the peptide motifs of HLA-C and HLA-G from naturally presented peptides and generation of binding prediction matrices, J. Immunol, vol.199, pp.2639-2651, 2017.

M. Rasmussen, Uncovering the peptide-binding specificities of HLA-C: a general strategy to determine the specificity of any MHC class I molecule, J. Immunol, vol.193, pp.4790-4802, 2014.

C. C. Gross, Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation, Proc. Natl Acad. Sci. USA, vol.113, pp.2973-2982, 2016.

V. Viglietta, C. Baecher-allan, H. L. Weiner, and D. A. Hafler, Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis, J. Exp. Med, vol.199, pp.971-979, 2004.

A. Schneider, In active relapsing-remitting multiple sclerosis, effector T cell resistance to adaptive T(regs) involves IL-6-mediated signaling, Sci. Transl. Med, vol.5, pp.170-115, 2013.

B. Trinschek, Kinetics of IL-6 production defines T effector cell responsiveness to regulatory T cells in multiple sclerosis, PLoS ONE, vol.8, p.77634, 2013.

S. Laukoter, Differences in T cell cytotoxicity and cell death mechanisms between progressive multifocal leukoencephalopathy, herpes simplex virus encephalitis and cytomegalovirus encephalitis, Acta Neuropathol, vol.133, pp.613-627, 2017.

S. Akanuma, S. Hirose, M. Tachikawa, and K. Hosoya, Localization of organic anion transporting polypeptide (Oatp) 1a4 and Oatp1c1 at the rat bloodretinal barrier, Fluids Barriers CNS, vol.10, p.29, 2013.

D. A. Ridder, TAK1 in brain endothelial cells mediates fever and lethargy, J. Exp. Med, vol.208, pp.2615-2623, 2011.

H. Yousef, Aged blood impairs hippocampal neural precursor activity and activates microglia via brain endothelial cell VCAM1, Nat. Med, vol.25, pp.988-1000, 2019.

D. I. Scheffer, J. Shen, D. P. Corey, and Z. Y. Chen, Gene expression by mouse inner ear hair cells during development, J. Neurosci, vol.35, pp.6366-6380, 2015.

D. S. Sharlin, T. J. Visser, and D. Forrest, Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea, Endocrinology, vol.152, pp.5053-5064, 2011.

Y. M. Hyun, H. L. Chung, J. L. Mcgrath, R. E. Waugh, and M. Kim, Activated integrin VLA-4 localizes to the lamellipodia and mediates T cell migration on VCAM-1, J. Immunol, vol.183, pp.359-369, 2009.

G. Martin-blondel, Migration of encephalitogenic CD8 T cells into the central nervous system is dependent on the alpha4beta1-integrin, Eur. J. Immunol, vol.45, pp.3302-3312, 2015.

T. A. Yednock, Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin, Nature, vol.356, pp.63-66, 1992.

C. H. Polman, A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis, N. Engl. J. Med, vol.354, pp.899-910, 2006.

B. A. Cree, An open label study of the effects of rituximab in neuromyelitis optica, Neurology, vol.64, pp.1270-1272, 2005.

I. Kleffner, Neuroimaging in Susac's syndrome: focus on DTI, J. Neurol. Sci, vol.299, pp.92-96, 2010.

S. Nyberg, N. J. Abbott, X. Shi, P. S. Steyger, and A. Dabdoub, Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier, Sci. Transl. Med, vol.11, p.482, 2019.

L. Klotz, B7-H1 shapes T-cell-mediated brain endothelial cell dysfunction and regional encephalitogenicity in spontaneous CNS autoimmunity, Proc. Natl Acad. Sci. USA, vol.113, pp.6182-6191, 2016.

S. W. Howland, Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria, EMBO Mol. Med, vol.5, pp.916-931, 2013.

P. A. Swanson, CD8+ T cells induce fatal brainstem pathology during cerebral malaria via luminal antigen-specific engagement of brain vasculature, PLoS Pathog, vol.12, p.1006022, 2016.

C. Konradt, Endothelial cells are a replicative niche for entry of Toxoplasma gondii to the central nervous system, Nat. Microbiol, vol.1, pp.16001-16001, 2016.

E. E. Mccandless, B. Zhang, M. S. Diamond, and R. S. Klein, CXCR4 antagonism increases T cell trafficking in the central nervous system and improves survival from West Nile virus encephalitis, Proc. Natl Acad. Sci, vol.105, pp.11270-11275, 2008.

H. Kebir, Humanized mouse model of Rasmussen's encephalitis supports the immune-mediated hypothesis, J. Clin. Invest, vol.128, 2000.

J. Breuer, Dual action by fumaric acid esters synergistically reduces adhesion to human endothelium, Mult. Scler, p.1352458517735189, 2017.

P. Champagne, A. R. Dumont, and R. P. Sekaly, Learning to remember: generation and maintenance of T-cell memory, DNA Cell Biol, vol.20, pp.745-760, 2001.

D. Hamann, Phenotypic and functional separation of memory and effector human CD8+ T cells, J. Exp. Med, vol.186, pp.1407-1418, 1997.

Y. Zhao, Preferential use of public TCR during autoimmune encephalomyelitis, J. Immunol, vol.196, pp.4905-4914, 2016.

F. Sallusto, D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.401, pp.708-712, 1999.

A. K. Sewell, Why must T cells be cross-reactive?, Nat. Rev. Immunol, vol.12, p.669, 2012.

H. Frebel, Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice, J. Exp. Med, vol.209, pp.2485-2499, 2012.

V. Appay, Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections, Nat. Med, vol.8, pp.379-385, 2002.

P. Champagne, Skewed maturation of memory HIV-specific CD8 T lymphocytes, Nature, vol.410, pp.106-111, 2001.

S. Jarius, B. Neumayer, K. P. Wandinger, M. Hartmann, and B. Wildemann, Anti-endothelial serum antibodies in a patient with Susac's syndrome, J. Neurol. Sci, vol.285, pp.259-261, 2009.

P. K. Coyle, The role of natalizumab in the treatment of multiple sclerosis, Am. J. Manag. Care, vol.16, issue.6, pp.164-170, 2010.

L. Zhovtis-ryerson, I. Kister, M. Snuderl, C. Magro, and B. Bielekova, Incomplete Susac syndrome exacerbated after natalizumab, Neurol. Neuroimmunol. Neuroinflamm, vol.2, p.151, 2015.

R. M. Rennebohm, N. Asdaghi, S. Srivastava, and E. Gertner, Guidelines for treatment of Susac syndrome -an update, Int. J. Stroke, vol.1747493017751737, 2018.

S. Bittner, Rasmussen encephalitis treated with natalizumab, Neurology, vol.81, pp.395-397, 2013.

C. H. Polman, Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria, Ann. Neurol, vol.69, pp.292-302, 2011.

A. I. Saxena, Cutting edge: Multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes, J. Immunol, vol.181, pp.1617-1621, 2008.

D. J. Morgan, CD8(+) T cell-mediated spontaneous diabetes in neonatal mice, J. Immunol, vol.157, pp.978-983, 1996.

A. Junker, Multiple sclerosis: T-cell receptor expression in distinct brain regions, Brain, vol.130, pp.2789-2799, 2007.

J. Monteiro, R. Hingorani, R. Peroglizzi, B. Apatoff, and P. K. Gregersen, Oligoclonality of CD8+ T cells in multiple sclerosis, Autoimmunity, vol.23, pp.127-138, 1996.

S. C. Chiang, Comparison of primary human cytotoxic T-cell and natural killer cell responses reveal similar molecular requirements for lytic granule exocytosis but differences in cytokine production, Blood, vol.121, pp.1345-1356, 2013.

E. Biogen and M. Genzyme, Novartis Pharma GmbH, and Bayer Health Care, none related to this study. Her work is funded by Biogen, Novartis, the German Ministry for Education and Research (BMBF; 01Gl1603A), the German Research Foundation (DFG, SFB Transregio 128 A09), the European Union (Hor-izon2020, ReSToRE), the Interdisciplinary Center for Clinical Studies (IZKF), and the IMF. I.K. received travel expenses for attending meetings from Pfizer and CSL Behring, pp.3946-3949

I. K. , received speaker honoraria from Daiichi Sankyo. J.B.'s work is funded by the Austrian Science Fund, A.S.-M. receives research support from Novartis, pp.26936-26963

T. K. Biogen, M. Serono, T. Pharma, . Genzyme, . Sanofi-aventis et al., receives research support from Teva Pharma, Biogen, Genzyme, and Novartis. W.B. is supported by the Deutsche Forschungsgemeinschaft, the German Ministry for Education and Research, and by the Klaus Tschira Foundation. M.P. received speaker honoraria from Roche and Genzyme and travel/accommodation/ meeting expenses from Novartis, Biogen Idec, Genzyme, and MERCK Serono. D.-A.L. received speaker honoraria from Biogen, Merck, Novartis, Roche, Teva, and Genzyme and non-personal grants from Biogen, Genzyme, Novartis, MedDay, Merck, and Roche not related to this study, Biogen, Merck Serono, Novartis, Sanofi Genzyme, and TEVA outside the submitted work. M.K. received travel support and honoraria from Bayer Schering, Biogen Idec, Chugai Pharma, Merck Serono, Novartis Pharma, Teva Pharma, and Shire Deutschland

H. L. Novartis, S. Roche, . Aventis, and M. R. Biogen, received speaker honoraria from Euroimmun and research support from the Jubiläumsfonds der Östereichischen Nationalbank (project 16919) and the Austrian Science Fund (FWF: I3334-B27). N.S. received travel support from Novartis and Sanofi-Genzyme. L.K. received compensation for serving on scientific advisory boards for Genzyme

. Speaker, . Biogen, . Genzyme, N. Merck, R. Biogen et al., Deutsche Forschungsgesellschaft (DFG), Else Kröner Fresenius Foundation, Ministry for Education and Research (BMBF), Deutsche Forschungsgesellschaft (DFG), and the Interdisciplinary Center for Clinical Studies (IZKF) Münster. S.G.M. receives honoraria for lecturing, and travel expenses for attending meetings from Almirall

G. F. Muenster, A. Neurology, A. Therapeutics-germany, . Biogen, F. Diamed et al., Sanofi-Genzyme, and the Swiss Multiple Sclerosis Society. He also received research support from the German Ministry for Education and Research (BMBF), Deutsche Forschungsgesellschaft (DFG), Else Kröner Fresenius Foundation, Fresenius Foundation, Hertie Foundation, NRW Ministry of Education and Research, Interdisciplinary Center for Clinical Studies (IZKF) Muenster and RE Children's Foundation, Biogen GmbH, GlaxoSmithKline GmbH, Roche Pharma AG, and Sanofi-Genzyme. R.L. received grant support from Pierre Fabre, GlaxoSmithKline, and Diaccurate. He received speaker or scientific board honoraria from Biogen, Servier, Novartis, and Sanofi-Genzyme. R.L. is currently receiving grants from GlaxoSmithKline, Cancer Research Institute, French Cancer research foundation (ARC), Evgen, MedDay Pharmaceuticals, Merck Serono

, Andreas Schulte-Mecklenbeck 1 , Sebastian Herich 1 , Tilman Schneider-Hohendorf 1 , Henrike Plate 1 , Tanja Kuhlmann 5 , Markus Schwaninger 6, Luisa Klotz 1 , Sven G. Meuth, vol.26, issue.1

. Cnrs, U. Inserm, and C. Purpan, Pottkamp 2, 48149 Münster, Germany. 6 Institute of Experimental and Clinical Pharmacology and Toxicology, der Schornau 23-25, 44892 Bochum, Germany. 4 Department of Neuroimmunology, vol.3, p.37099

, Alfried Krupp Hospital, Alfried-Krupp-Strasse, vol.400, issue.1, p.45130

, Großhaderner Straße, vol.9, 1090.

C. C. Gross, C. Meyer, U. Bhatia, L. Yshii, and I. Kleffner, Münster, Germany. 25 Department of Infectious and Tropical Diseases, 24 Cells in Motion (CiM), vol.26