D. T. Auble, K. E. Hansen, C. G. Mueller, W. S. Lane, J. Thorner et al., MOT1, a global repressor of RNA polymerase II transcription, inhibits TBP binding to DNA by an ATP-dependent mechanism, Genes Dev, vol.8, pp.1920-1934, 1994.

V. Badarinarayana, Y. Chiang, and C. L. Denis, Functional interaction of CCR4-NOT proteins with TATAAA-binding protein (TBP) and its associated factors in yeast, Genetics, vol.155, pp.1045-1054, 2000.

Y. Bai, G. M. Perez, J. M. Beechem, and A. P. Weil, Structure-function analysis of TAF130: identification and characterization of a high-affinity TATA-binding protein interaction domain in the N terminus of yeast TAF II 130, Mol. Cell. Biol, vol.17, pp.3081-3093, 1997.

Y. Bai, C. Salvadore, Y. Chiang, M. A. Collart, H. Liu et al., The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5, Mol. Cell. Biol, vol.19, pp.6642-6651, 1999.

T. Burke and J. Kadonaga, The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAF II 60 of Drosophila, Genes Dev, vol.11, pp.3020-3031, 1997.

S. K. Burley and R. G. Roeder, Biochemistry and structural biology of transcription factor IID (TFIID), Annu. Rev. Biochem, vol.65, pp.769-799, 1996.

G. E. Chalkley and C. P. Verrijzer, DNA binding site selection by RNA polymerase II TAFs: a TAF II 250-TAF II 150 complex recognizes the initiator, EMBO J, vol.18, pp.4835-4845, 1999.

J. J. Chicca, D. T. Auble, and F. B. Pugh, Cloning and biochemical characterization of TAF172, a human homolog of yeast MOT1, Mol. Cell. Biol, vol.18, pp.1701-1710, 1998.

M. A. Collart and K. Struhl, CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters, EMBO J, vol.12, pp.177-186, 1993.

M. A. Collart and K. Struhl, NOT1 (CDC39), NOT2 (CDC36), NOT3, and NOT4 encode a global negative regulator of transcription that differentially affects TATA-element utilization, Genes Dev, vol.8, pp.525-537, 1994.

M. Daugeron, F. Mauxion, and B. Séraphin, The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation, Nucleic Acids Res, vol.29, pp.2448-2455, 2001.

P. C. Dedon, J. A. Soults, C. D. Allis, and M. A. Gorovsky, A simplified formaldehyde fixation and immunoprecipitation technique for studying protein-DNA interactions, Anal. Biochem, vol.197, pp.83-90, 1991.

C. L. Denis, Identification of new genes involved in the regulation of yeast alcohol dehydrogenase II, Genetics, vol.108, pp.833-834, 1984.

C. L. Denis and T. Malvar, The CCR4 gene from Saccharomyces cerevisiae is required for both nonfermentative and spt-mediated gene expression, Genetics, vol.124, pp.283-291, 1990.

M. P. Draper, C. Salvadore, and C. L. Denis, Identification of a mouse protein whose homolog in Saccharomyces cerevisiae is a component of the CCR4 transcriptional regulatory complex, Mol. Cell. Biol, vol.15, pp.3487-3495, 1995.

C. M. Drysdale, B. M. Jackson, R. Mcveigh, and E. R. Klebanow, The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Ada-Gcn5p coactivator complex, Mol. Cell. Biol, vol.18, pp.1711-1724, 1998.

A. M. Dudley, C. Rougeulle, and F. Winston, The SPT components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo, Genes Dev, vol.13, pp.2940-2945, 1999.

D. M. Eisenmann, K. M. Arndt, S. L. Ricupero, J. W. Rooney, and F. Winston, SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae, Genes Dev, vol.6, pp.1319-1331, 1992.

J. V. Geisberg, F. C. Holstege, R. Y. Young, and K. Struhl, Yeast NC2 associates with the RNA polymerase II preinitiation complex and selectively affects transcription in vivo, Mol. Cell. Biol, vol.21, pp.2736-2742, 2001.

A. Goppelt, G. Stelzer, F. Lottspeich, and M. Meisterernst, A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains, EMBO J, vol.15, pp.3105-3116, 1996.

P. A. Grant, D. Schieltz, M. G. Pray-grant, D. J. Steger, J. C. Reese et al., A subset of TAF II s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation, Cell, vol.94, pp.45-53, 1998.

S. Hahn, The role of TAFs in RNA polymerase II transcription, Cell, vol.95, pp.579-582, 1998.

F. C. Holstege, E. G. Jennings, J. J. Wyrick, T. I. Lee, C. J. Hengartner et al., Dissecting the regulatory circuitry of a eukaryotic genome, Cell, vol.95, pp.717-728, 1998.

J. A. Inostroza, F. H. Mermelstein, I. Ha, W. S. Lane, and D. Reinberg, Dr1, a TATA-binding protein-associated phosphoprotein and inhibitor of class II gene transcription, Cell, vol.70, pp.477-489, 1992.

A. Kobayashi, M. Tsuyoshi, Y. Ohyama, M. Kawaichi, and K. Tetsuro, Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae, J. Biol. Chem, vol.276, pp.395-405, 2001.

T. Kokubo, M. J. Swanson, J. Nishikawa, A. G. Hinnebusch, and Y. Nakatani, The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein, Mol. Cell. Biol, vol.18, pp.1003-1012, 1998.

T. Kotani, K. Banno, M. Ikura, A. G. Hinnebusch, Y. Nakatani et al., A role of transcriptional activators as antirepressors for the autoinhibitory activity of TATA box binding of transcription factor IID, Proc. Natl. Acad. Sci. USA, vol.97, pp.7178-7183, 2000.

T. Kotani, T. Miyake, Y. Tsukihashi, A. G. Hinnebusch, Y. Nakatani et al., Identification of highly conserved aminoterminal segments of dTaf II 230 and yTaf II 145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo, J. Biol. Chem, vol.273, pp.32254-32264, 1998.

L. Kuras, P. Kosa, M. Mencia, and K. Struhl, TAF-containing and TAF-independent forms of transcriptionally active TBP in vivo, Science, vol.288, pp.1244-1248, 2000.

L. Kuras and K. Struhl, Binding of TBP to promoters in vivo is stimulated by activators and requires Pol II holoenzyme, Nature, vol.399, pp.609-613, 1999.

T. I. Lee, J. J. Wyrick, S. S. Koh, E. G. Jennings, E. L. Gadbois et al., Interplay of positive and negative regulators in transcription initiation by RNA polymerase II holoenzyme, Mol. Cell. Biol, vol.18, pp.4455-4462, 1998.

T. I. Lee and R. A. Young, Transcription of protein-coding genes, Annu. Rev. Genet, vol.34, pp.77-137, 2000.

M. Lemaire and M. A. Collart, The TATA binding protein-associated factor yTaf II 19p functionally interacts with components of the global transcriptional regulator Ccr4-Not complex and physically interacts with the Not5 subunit, J. Biol. Chem, vol.275, pp.26925-26934, 2000.

E. Lenssen, U. Oberholzer, J. Labarre, C. D. Virgilio, and M. Collart, Saccharomyces cerevisiae Ccr4-Not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway, Mol. Microbiol, vol.43, pp.1023-1037, 2001.

H. Liu, V. Badarinarayana, D. C. Audino, J. Rappsilber, M. Mann et al., The NOT proteins are part of the CCR4 transcriptional complex and affect gene expression both positively and negatively, EMBO J, vol.17, pp.1096-1106, 1998.

L. Maillet and M. A. Collart, Interaction between Not1p, a component of the Ccr4-Not complex, a global regulator of transcription, and Dhh1p, a putative RNA helicase, J. Biol. Chem, vol.277, pp.2835-2842, 2002.

L. Maillet, C. Tu, Y. K. Hong, E. O. Shuster, and M. A. Collart, The essential function of NOT1 lies within the CCR4-NOT complex, J. Mol. Biol, vol.303, pp.131-143, 2000.

E. Martinez, T. K. Kundu, J. Fu, and R. G. Roeder, A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID, J. Biol. Chem, vol.273, pp.23781-23785, 1998.

O. Matangkasombut, R. M. Buratowski, N. W. Swilling, and S. Buratowski, Bromodomain factor 1 corresponds to a missing piece of yeast TFIID, Genes Dev, vol.14, pp.951-962, 2000.

M. Meisterernst and R. G. Roeder, Family of proteins that interact with TFIID and regulate promoter activity, Cell, vol.67, pp.557-567, 1991.

M. Menica and K. Struhl, Region of yeast TAF130 required for TFIID to associate with promoters, Mol. Cell. Biol, vol.21, pp.1145-1154, 2001.

Z. Moqtaderi, Y. Bai, D. Poon, A. P. Weil, and K. Struhl, TBPassociated factors are not generally required for transcriptional activation in yeast, Nature, vol.383, pp.188-191, 1996.

Z. Moqtaderi, M. Keaveney, and K. Struhl, The histone H3-like TAF is broadly required for transcription in yeast, Mol. Cell, vol.2, pp.675-682, 1998.

U. Oberholzer and M. A. Collart, Characterization of NOT5 that encodes a new component of the NOT protein complex, Gene, vol.207, pp.61-69, 1998.

T. Oelgeschlager, C. M. Chiang, and R. G. Roeder, Topology and reorganisation of a human TFIID-promoter complex, Nature, vol.382, pp.735-738, 1996.

V. V. Ogryzko, T. Kotani, X. Zhang, L. R. Schiltz, T. Howard et al., Histone-like TAFs within the PCAF histone acetylase complex, Cell, vol.94, pp.35-44, 1998.

G. Orphanides, T. Lagrange, and D. Reinberg, The general transcription factors of RNA polymerase II, Genes Dev, vol.10, pp.2657-2683, 1996.

C. L. Peterson, A. Dingwall, and M. P. Scott, Five SWI/SNF gene products are components of a large multisubunit complex required for transcriptional enhancement, Proc. Natl. Acad. Sci. USA, vol.91, pp.2905-2908, 1994.

D. Poon and P. A. Weil, Immunopurification of yeast TATA-binding protein and associated factors. Presence of transcription factor IIIB transcriptional activity, J. Biol. Chem, vol.268, pp.15325-15328, 1993.

R. T. Ranallo, K. Struhl, and L. A. Stargell, A TATA binding protein mutant defective for TFIID complex formation in vivo, Mol. Cell. Biol, vol.19, pp.3951-3957, 1999.

J. C. Reese, L. Apone, S. S. Walker, L. A. Griffin, and M. R. Green, Yeast TAF II S in a multisubunit complex required for activated transcription, Nature, vol.371, pp.523-527, 1994.

J. C. Reese, Z. Zhang, and H. Kurpad, Identification of a yeast transcription factor IID subunit, TSG2/TAF48, J. Biol. Chem, vol.275, pp.17391-17398, 2000.

S. L. Sanders and A. P. Weil, Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex, J. Biol. Chem, vol.275, pp.13895-13900, 2000.

W. Shen and M. R. Green, Yeast TAF(II)145 functions as a core promoter selectivity factor, not a general coactivator, Cell, vol.90, pp.615-624, 1997.

K. Struhl and Z. Moqtaderi, The TAFs in the HAT, Cell, vol.94, pp.1-4, 1998.

Y. Tsukihashi, T. Miyake, M. Kawaichi, and T. Kokubo, Impaired core promoter recognition caused by novel yeast TAF145 mutations can be restored by creating a canonical TATA element within the promoter region of the TUB2 gene, Mol. Cell. Biol, vol.20, pp.2385-2399, 2000.

M. Tucker, M. A. Valencia-sanchez, R. R. Staples, J. Chen, C. L. Denis et al., The transcription factor associated proteins, Ccr4p and Caf1p, are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae, Cell, vol.104, pp.377-386, 2001.

C. P. Verrijzer, K. Yokomori, J. Chen, and R. Tjian, Drosophila TAF II 150: similarity to yeast TSM-1 and specific binding to core promoter DNA, Science, vol.264, pp.933-941, 1994.

C. P. Verrijzer, J. Chen, K. Yokomori, and R. Tjian, Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II, Cell, vol.81, pp.1115-1125, 1995.

E. Wieczorek, M. Brand, X. Jacq, and L. Tora, Function of a TAF IIcontaining complex without TBP in transcription by RNA polymerase II, Nature, vol.393, pp.187-191, 1998.

M. Woontner, P. A. Wade, J. Bonner, and J. A. Jaehning, Transcriptional activation in an improved whole-cell extract from Saccharomyces cerevisiae, Mol. Cell. Biol, vol.11, pp.4555-4560, 1991.

A. S. Zervos, J. Gyuris, and R. Brent, Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites, Cell, vol.72, pp.223-232, 1993.