D. E. Logothetis, Phosphoinositide control of membrane protein function: a frontier led by studies on ion channels, Annu. Rev. Physiol, vol.77, pp.81-104, 2015.

D. W. Hilgemann and R. Ball, Regulation of cardiac Na + , Ca 2+ exchange and K ATP potassium channels by PIP 2, Science, vol.273, pp.956-959, 1996.

B. C. Suh and B. Hille, PIP 2 is a necessary cofactor for ion channel function: how and why?, Annu. Rev. Biophys, vol.37, pp.175-195, 2008.

B. Hille, E. J. Dickson, M. Kruse, O. Vivas, and B. C. Suh, Phosphoinositides regulate ion channels, Biochim. Biophys. Acta, vol.1851, pp.844-856, 2015.

S. B. Hansen, Lipid agonism: The PIP2 paradigm of ligand-gated ion channels, Biochim. Biophys. Acta, vol.1851, pp.620-628, 2015.

P. Enyedi and G. Czirják, Molecular background of leak K + currents: two-pore domain potassium channels, Physiol. Rev, vol.90, pp.559-605, 2010.

, Scientific REPORTS |, vol.7, p.45407

F. V. Sepúlveda, L. P. Cid, J. Teulon, and M. I. Niemeyer, Molecular aspects of structure, gating and physiology of pH-sensitive background K 2P and Kir K + -transport channels, Physiol. Rev, vol.95, pp.179-217, 2015.

V. Renigunta, G. Schlichthorl, and J. Daut, Much more than a leak: structure and function of K 2P -channels, Pflügers Arch, vol.467, pp.867-894, 2015.

S. Feliciangeli, F. C. Chatelain, D. Bichet, and F. Lesage, The family of K2P channels: salient structural and functional properties, J. Physiol, vol.593, pp.2587-2603, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02390416

A. Mathie, Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors, J. Physiol, vol.578, pp.377-385, 2007.

J. Chemin, Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K + channels, EMBO J, vol.22, pp.5403-5411, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00091042

E. M. Talley, Q. Lei, J. E. Sirois, and D. A. Bayliss, TASK-1, a two-pore domain K + channel, is modulated by multiple neurotransmitters in motoneurons, Neuron, vol.25, pp.399-410, 2000.

E. M. Talley and D. A. Bayliss, Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action, J. Biol. Chem, vol.277, pp.17733-17742, 2002.

F. Lesage, C. Terrenoire, G. Romey, and M. Lazdunski, Human TREK2, a 2P domain mechano-sensitive K + channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors, J. Biol. Chem, vol.275, pp.28398-28405, 2000.

J. Murbartian, Q. Lei, J. J. Sando, and D. A. Bayliss, Sequential phosphorylation mediates receptor-and kinase-induced inhibition of TREK-1 background potassium channels, J. Biol. Chem, vol.280, pp.30175-30184, 2005.

J. J. Enyeart, S. J. Danthi, H. Liu, and J. A. Enyeart, Angiotensin II inhibits bTREK-1 K + channels in adrenocortical cells by separate Ca 2+ -and ATP hydrolysis-dependent mechanisms, J. Biol. Chem, vol.280, pp.30814-30828, 2005.

G. Czirják, Z. E. Toth, and P. Enyedi, The two-pore domain K + channel, TRESK, is activated by the cytoplasmic calcium signal through calcineurin, J. Biol. Chem, vol.279, pp.18550-18558, 2004.

P. Enyedi and G. Czirják, Properties, regulation, pharmacology, and functions of the K 2P channel, TRESK. Pflügers Arch, vol.467, pp.945-958, 2015.

C. M. Lopes, PIP 2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K + channels, J. Physiol, vol.564, pp.117-129, 2005.

M. Lindner, M. G. Leitner, C. R. Halaszovich, G. R. Hammond, and D. Oliver, Probing the regulation of TASK potassium channels by PI4,5P(2) with switchable phosphoinositide phosphatases, J. Physiol, vol.589, pp.3149-3162, 2011.

X. Chen, Inhibition of a background potassium channel by Gq protein a-subunits, Proc. Natl. Acad. Sci. USA, vol.103, pp.3422-3427, 2006.

G. Sandoz, S. C. Bell, and E. Y. Isacoff, Optical probing of a dynamic membrane interaction that regulates the TREK1 channel, Proc. Natl. Acad. Sci. USA, vol.108, pp.2605-2610, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00731911

B. U. Wilke, Diacylglycerol mediates regulation of TASK potassium channels by Gq-coupled receptors, Nat. Commun, vol.5, p.5540, 2014.

L. P. Cid, TASK-2: a K 2P K + channel with complex regulation and diverse physiological functions, Front. Physiol, vol.4, p.198, 2013.

K. I. López-cayuqueo, G. Peña-münzenmayer, M. I. Niemeyer, F. V. Sepúlveda, and L. P. Cid, TASK-2 K 2P K + channel: thoughts about gating and its fitness to physiological function, Pflügers Arch, vol.467, pp.1043-1053, 2015.

R. Warth, Proximal renal tubular acidosis in TASK2 K + channel-deficient mice reveals a mechanism for stabilizing bicarbonate transport, Proc. Natl. Acad. Sci. USA, vol.101, pp.8215-8220, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00320811

C. Gestreau, Task2 potassium channels set central respiratory CO 2 and O 2 sensitivity, Proc. Natl. Acad. Sci. USA, vol.107, pp.2325-2330, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01229488

S. Wang, TASK-2 Channels Contribute to pH Sensitivity of Retrotrapezoid Nucleus Chemoreceptor Neurons, J. Neurosci, vol.33, pp.16033-16044, 2013.

P. G. Guyenet, Proton detection and breathing regulation by the retrotrapezoid nucleus, J. Physiol, vol.594, pp.1529-1551, 2016.

Y. Cazals, KCNK5 channels mostly expressed in cochlear outer sulcus cells are indispensable for hearing, Nat. Commun, vol.6, p.8780, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01791157

D. Toncheva, NGS nominated CELA1, HSPG2, and KCNK5 as candidate genes for predisposition to Balkan endemic nephropathy, Biomed. Res. Int, p.920723, 2014.

E. L. Veale and A. Mathie, Aristolochic acid, a plant extract used in the treatment of pain and linked to Balkan Endemic Nephropathy, is a regulator of K 2P channels, Br. J. Pharmacol, vol.173, pp.1639-1652, 2016.

A. P. Reed, G. Bucci, F. Abd-wahab, and S. J. Tucker, Dominant-negative effect of a missense variant in the TASK-2 (KCNK5) K + channel associated with Balkan Endemic Nephropathy, PLoS One, vol.11, p.156456, 2016.

S. Bittner, Expression of K 2P 5.1 potassium channels on CD4+ T lymphocytes correlates with disease activity in rheumatoid arthritis patients, Arthritis. Res. Ther, vol.13, p.21, 2011.

S. Nakakura, Pathophysiological significance of the two-pore domain K + channel K 2P 5.1 in splenic CD4(+ )CD25(? ) T cell subset from a chemically-induced murine inflammatory bowel disease model, Front. Physiol, vol.6, p.299, 2015.

M. I. Niemeyer, L. P. Cid, L. F. Barros, and F. V. Sepúlveda, Modulation of the two-pore domain acid-sensitive K + channel TASK-2 (KCNK5) by changes in cell volume, J. Biol. Chem, vol.276, pp.43166-43174, 2001.

M. I. Niemeyer, Neutralization of a single arginine residue gates open a two-pore domain, alkali-activated K + channel, Proc. Natl. Acad. Sci. USA, vol.104, pp.666-671, 2007.

M. I. Niemeyer, L. P. Cid, G. Peña-münzenmayer, and F. V. Sepúlveda, Separate gating mechanisms mediate the regulation of K 2P potassium channel TASK-2 by intra-and extracellular pH, J. Biol. Chem, vol.285, pp.16467-16475, 2010.

C. Añazco, G protein modulation of K 2P potassium channel TASK-2: A role of basic residues in the C-terminus domain, Pflügers Arch, vol.465, pp.1715-1726, 2013.

Z. Fan and J. C. Makielski, Anionic phospholipids activate ATP-sensitive potassium channels, J. Biol. Chem, vol.272, pp.5388-5395, 1997.

P. L. Piechotta, The pore structure and gating mechanism of K 2P channels, EMBO J, vol.30, pp.3607-3619, 2011.

B. C. Suh and B. Hille, Recovery from muscarinic modulation of M current channels requires phosphatidylinositol 4,5-bisphosphate synthesis, Neuron, vol.35, pp.507-520, 2002.

B. C. Suh, L. F. Horowitz, W. Hirdes, K. Mackie, and B. Hille, Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq, J. Gen. Physiol, vol.123, pp.663-683, 2004.

B. H. Falkenburger, J. B. Jensen, and B. Hille, Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltagesensitive phosphatase in living cells, J. Gen. Physiol, vol.135, pp.99-114, 2010.

S. Hughes, S. J. Marsh, A. Tinker, and D. A. Brown, PIP 2 -dependent inhibition of M-type (Kv7.2/7.3) potassium channels: direct online assessment of PIP 2 depletion by Gq-coupled receptors in single living neurons, Pflügers Arch, vol.455, pp.115-124, 2007.

M. I. Hossain, Enzyme domain affects the movement of the voltage sensor in ascidian and zebrafish voltage-sensing phosphatases, J. Biol. Chem, vol.283, pp.18248-18259, 2008.

A. Rjasanow, M. G. Leitner, V. Thallmair, C. R. Halaszovich, and D. Oliver, Ion channel regulation by phosphoinositides analyzed with VSPs -PI(4,5)P 2 affinity, phosphoinositide selectivity, and PI(4,5)P 2 pool accessibility, Front. Pharmacol, vol.6, p.127, 2015.

X. Du, Characteristic interactions with phosphatidylinositol 4,5-bisphosphate determine regulation of kir channels by diverse modulators, J. Biol. Chem, vol.279, pp.37271-37281, 2004.

, Scientific REPORTS |, vol.7, p.45407

Y. Li, N. Gamper, D. W. Hilgemann, and M. S. Shapiro, Regulation of Kv7 (KCNQ) K + channel open probability by phosphatidylinositol 4,5-bisphosphate, J. Neurosci, vol.25, pp.9825-9835, 2005.

J. M. Kavran, Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains, J. Biol. Chem, vol.273, pp.30497-30508, 1998.

C. M. Lopes, Alterations in conserved Kir channel-PIP 2 interactions underlie channelopathies, Neuron, vol.34, pp.933-944, 2002.

T. Balla, Phosphoinositides: tiny lipids with giant impact on cell regulation, Physiol. Rev, vol.93, pp.1019-1137, 2013.

D. Paolo, G. De-camilli, and P. , Phosphoinositides in cell regulation and membrane dynamics, Nature, vol.443, pp.651-657, 2006.

J. Chemin, Up-and down-regulation of the mechano-gated K 2P channel TREK-1 by PIP 2 and other membrane phospholipids, Pflügers Arch, vol.455, pp.97-103, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00171100

A. Dedman, The mechano-gated K 2P channel TREK-1, Eur. Biophys. J, vol.38, pp.293-303, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00315012

H. Zhang, PIP 2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents, Neuron, vol.37, pp.963-975, 2003.

J. A. Millar, A functional role for the two-pore domain potassium channel TASK-1 in cerebellar granule neurons, Proc. Natl. Acad. Sci. USA 97, pp.3614-3618, 2000.

S. B. Hansen, X. Tao, and R. Mackinnon, Structural basis of PIP 2 activation of the classical inward rectifier K + channel Kir2.2, Nature, vol.477, pp.495-498, 2011.

M. R. Whorton and R. Mackinnon, Crystal structure of the mammalian GIRK2 K + channel and gating regulation by G proteins, PIP 2 , and sodium, Cell, vol.147, pp.199-208, 2011.

M. R. Whorton and R. Mackinnon, X-ray structure of the mammalian GIRK2-betagamma G-protein complex, Nature, vol.498, pp.190-197, 2013.

M. Rapedius, Control of pH and PIP2 gating in heteromeric Kir4.1/Kir5.1 channels by H-Bonding at the helix-bundle crossing, Channels (Austin), vol.1, pp.327-330, 2007.

S. J. Tucker and T. Baukrowitz, How highly charged anionic lipids bind and regulate ion channels, J. Gen. Physiol, vol.131, pp.431-438, 2008.

H. Barriere, Role of TASK2 potassium channels regarding volume regulation in primary cultures of mouse proximal tubules, J. Gen. Physiol, vol.122, pp.177-190, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00320817

N. Bobak, Volume regulation of murine T lymphocytes relies on voltage-dependent and two-pore domain potassium channels, Biochim. Biophys. Acta, vol.1808, pp.2036-2044, 2011.

J. Andronic, Identification of two-pore domain potassium channels as potent modulators of osmotic volume regulation in human T lymphocytes, Biochim. Biophys. Acta, vol.1828, pp.699-707, 2013.

T. J. Jentsch, VRACs and other ion channels and transporters in the regulation of cell volume and beyond, Nat. Rev. Mol. Cell. Biol, vol.17, pp.293-307, 2016.

J. Piron, KCNE1-KCNQ1 osmoregulation by interaction of phosphatidylinositol-4,5-bisphosphate with Mg 2+ and polyamines, J. Physiol, vol.588, pp.3471-3483, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00651470

Y. Li, KCNE1 enhances phosphatidylinositol 4,5-bisphosphate (PIP 2 ) sensitivity of IKs to modulate channel activity, Proc. Natl. Acad. Sci. USA, vol.108, pp.9095-9100, 2011.

L. P. Cid, M. I. Niemeyer, A. Ramírez, and F. V. Sepúlveda, Splice variants of a ClC-2 chloride channel with differing functional characteristics, Am. J. Physiol, vol.279, pp.1198-1210, 2000.

M. Díaz and F. V. Sepúlveda, Characterisation of Ca 2+ -dependent inwardly rectifying K + currents in HeLa cells, Pflügers Arch, vol.430, pp.168-180, 1995.