C. Achard, A. Surendran, and M. E. Wedge, Lighting a Fire in the Tumor Microenvironment Using Oncolytic Immunotherapy, EBioMedicine, vol.31, pp.17-24, 2018.

S. J. Russell, K. W. Peng, and J. C. Bell, Oncolytic virotherapy, Nat Biotechnol, vol.30, pp.658-670, 2012.

J. B. Guillerme, M. Gregoire, and F. Tangy, Antitumor virotherapy by attenuated measles virus (MV), Biology (Basel), vol.2, pp.587-602, 2013.

S. Robinson and E. Galanis, Potential and clinical translation of oncolytic measles viruses, Expert Opin Biol Ther, vol.17, pp.353-363, 2017.

R. E. Dorig, A. Marcil, and A. Chopra, The human CD46 molecule is a receptor for measles virus (Edmonston strain), Cell, vol.75, pp.295-305, 1993.

D. Naniche, G. Varior-krishnan, and F. Cervoni, Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus, J Virol, vol.67, pp.6025-6032, 1993.

Z. Fishelson, N. Donin, and S. Zell, Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors, Mol Immunol, vol.40, pp.109-123, 2003.

N. M. Ravindranath and C. Shuler, Expression of complement restriction factors (CD46, CD55 & CD59) in head and neck squamous cell carcinomas, J Oral Pathol Med, vol.35, pp.560-567, 2006.

B. D. Anderson, T. Nakamura, and S. J. Russell, High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus, Cancer Res, vol.64, pp.4919-4926, 2004.

C. Achard, N. Boisgerault, and T. Delaunay, Sensitivity of pleural mesothelioma to oncolytic measles virus depends on defects of the type I interferon response, Oncotarget, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01285131

S. Berchtold, J. Lampe, and T. Weiland, Innate immune defense defines susceptibility of sarcoma cells to measles vaccine virus-based oncolysis, J Virol, vol.87, pp.3484-3501, 2013.

M. Noll, S. Berchtold, and J. Lampe, Primary resistance phenomena to oncolytic measles vaccine viruses, Int J Oncol, vol.43, pp.103-112, 2013.

W. M. Schneider, M. D. Chevillotte, and C. M. Rice, Interferon-stimulated genes: a complex web of host defenses, Annu Rev Immunol, vol.32, pp.513-545, 2014.

N. Grandvaux, M. J. Servant, and B. Tenoever, Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes, J Virol, vol.76, pp.5532-5539, 2002.

T. Nakaya, M. Sato, and N. Hata, Gene induction pathways mediated by distinct IRFs during viral infection, Biochem Biophys Res Commun, vol.283, pp.1150-1156, 2001.

T. A. Yap, J. G. Aerts, and S. Popat, Novel insights into mesothelioma biology and implications for therapy, Nat Rev Cancer, vol.17, pp.475-488, 2017.

F. Gueugnon, S. Leclercq, and C. Blanquart, Identification of novel markers for the diagnosis of malignant pleural mesothelioma, Am J Pathol, vol.178, pp.1033-1042, 2011.

T. L. Hackett, S. M. Warner, and D. Stefanowicz, Induction of epithelialmesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-beta1, Am J Respir Crit Care Med, vol.180, pp.122-133, 2009.

A. De-reynies, M. C. Jaurand, and A. Renier, Molecular classification of malignant pleural mesothelioma: identification of a poor prognosis subgroup linked to the epithelial-to-mesenchymal transition, Clin Cancer Res, vol.20, pp.1323-1334, 2014.

R. Tranchant, L. Quetel, and A. Tallet, Co-occurring Mutations of Tumor Suppressor Genes, LATS2 and NF2, in Malignant Pleural Mesothelioma, Clin Cancer Res, vol.23, pp.3191-3202, 2017.

C. Combredet, V. Labrousse, and L. Mollet, A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice, J Virol, vol.77, pp.11546-11554, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02129918

J. Schindelin, I. Arganda-carreras, and E. Frise, Fiji: an open-source platform for biological-image analysis, Nature methods, vol.9, pp.676-682, 2012.

J. W. Schoggins, S. J. Wilson, and M. Panis, A diverse range of gene products are effectors of the type I interferon antiviral response, Nature, vol.472, pp.481-485, 2011.

D. Jean, J. Daubriac, L. Pimpec-barthes, and F. , Molecular changes in mesothelioma with an impact on prognosis and treatment, Arch Pathol Lab Med, vol.136, issue.3, pp.277-293, 2012.

J. Q. Cheng, S. C. Jhanwar, and W. M. Klein, p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma, Cancer Res, vol.54, pp.5547-5551, 1994.

S. Xio, D. Li, and J. Vijg, Codeletion of p15 and p16 in primary malignant mesothelioma, Oncogene, vol.11, pp.511-515, 1995.

S. E. Monaco, Y. Shuai, and M. Bansal, The diagnostic utility of p16 FISH and GLUT-1 immunohistochemical analysis in mesothelial proliferations, Am J Clin Pathol, vol.135, pp.619-627, 2011.

S. Chiosea, A. Krasinskas, and P. T. Cagle, Diagnostic importance of 9p21 homozygous deletion in malignant mesotheliomas. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, vol.21, pp.742-747, 2008.

S. Dacic, H. Kothmaier, and S. Land, Prognostic significance of p16/cdkn2a loss in pleural malignant mesotheliomas, Virchows Arch, vol.453, pp.627-635, 2008.

P. B. Illei, V. W. Rusch, and M. F. Zakowski, Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas, Clin Cancer Res, vol.9, pp.2108-2113, 2003.

Y. Yoshikawa, M. Emi, and T. Hashimoto-tamaoki, High-density array-CGH with targeted NGS unmask multiple noncontiguous minute deletions on chromosome 3p21 in mesothelioma, Proc Natl Acad Sci, vol.113, issue.47, pp.13432-13437, 2016.

J. K. Kaufmann and E. A. Chiocca, Glioma virus therapies between bench and bedside, Neuro Oncol, vol.16, pp.334-351, 2014.

A. Marchini, S. Bonifati, and E. M. Scott, Oncolytic parvoviruses: from basic virology to clinical applications, Virology journal, vol.12, p.6, 2015.

C. Kurokawa, I. D. Iankov, and S. K. Anderson, Constitutive Interferon Pathway Activation in Tumors as an Efficacy Determinant Following Oncolytic Virotherapy, Journal of the National Cancer Institute, 2018.

A. K. Pinto, H. J. Ramos, and X. Wu, Deficient IFN signaling by myeloid cells leads to MAVS-dependent virus-induced sepsis, PLoS Pathog, vol.10, p.1004086, 2014.

T. Delaunay, M. Violland, and N. Boisgerault, Oncolytic viruses sensitize tumor cells for NYESO-1 tumor antigen recognition by CD4+ effector T cells, vol.7, p.1407897, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01644345

C. Achard, N. Boisgerault, and T. Delaunay, Induction of immunogenic tumor cell death by attenuated oncolytic measles virus, J Clin Cell Immunol, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01148993

C. Achard, J. B. Guillerme, and D. Bruni, Oncolytic measles virus induces Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated cytotoxicity by human myeloid and plasmacytoid dendritic cells, Oncoimmunology, vol.6, p.1261240, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01480165