. Qiagen and C. A. Valencia, RNAs were retro-transcribed using Superscript transcriptase (Superscript II, Invitrogen). Following forward and reverse primers were used, extraction and quantitative real-time PCR. Total RNAs were extracted with RNAeasy mini kit, p.48

, Protein extracts were separated by SDS-PAGE, transferred onto a PVDF membrane (Millipore, Billerica, MA, USA) and revealed with a chemiluminescence kit (Millipore), cruz Biotechnologies), pRb 4H1 (9309, Cell Signaling) and polymerase II, vol.3742, p.73

, Single (ChIP) and serial ChIP experiments were performed essentially as previously described. 49 The following primers were used: NOXA IS: 5 0 -CGTCTAGTTTCCCTACGTC-3 0, vol.5

, Statistical analysis of data was performed using one-tailed Student's t-test on GraphPad Prism

J. M. Adams and S. Cory, The Bcl-2 apoptotic switch in cancer development and therapy, Oncogene, vol.26, pp.1324-1337, 2007.

L. Lalier, P. Cartron, P. Juin, S. Nedelkina, S. Manon et al., Bax activation and mitochondrial insertion during apoptosis, Apoptosis, vol.12, pp.887-896, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00131560

J. E. Chipuk, T. Moldoveanu, F. Llambi, M. J. Parsons, and D. R. Green, The BCL-2 family reunion, Mol Cell, vol.37, pp.299-310, 2010.

, Caspase-cleaved pRb and E2F-1 promote apoptosis J Bertin-Ciftci et al

P. N. Kelly and A. Strasser, The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy, Cell Death Differ, vol.18, pp.1414-1424, 2011.

T. N. Chonghaile and A. Letai, Mimicking the BH3 domain to kill cancer cells, Oncogene, vol.27, pp.149-157, 2009.

L. Chen, S. N. Willis, A. Wei, B. J. Smith, J. I. Fletcher et al., Differential targeting of prosurvival Bcl-2 proteins by their BH3-Only ligands allows complementary apoptotic function, Mol Cell, vol.17, pp.393-403, 2005.

A. Shamas-din, H. Brahmbhatt, B. Leber, and D. W. Andrews, BH3-only proteins: orchestrators of apoptosis, Biochim Biophys Acta, vol.1813, pp.508-520, 2011.

A. Aranovich, Q. Liu, T. Collins, F. Geng, S. Dixit et al., Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells, Mol Cell, vol.45, pp.754-763, 2012.

T. Oltersdorf, S. W. Elmore, A. R. Shoemaker, R. C. Armstrong, D. J. Augeri et al., An inhibitor of Bcl-2 family proteins induces regression of solid tumours, Nature, vol.435, pp.677-681, 2005.

V. Del-gaizo-moore, J. R. Brown, M. Certo, T. M. Love, C. D. Novina et al., Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensitivity to BCL2 antagonist ABT-737, J Clin Invest, vol.117, pp.112-121, 2007.

T. Gallenne, F. Gautier, L. Oliver, E. Hervouet, B. Noël et al., Bax activation by the BH3-only protein Puma promotes cell dependence on antiapoptotic Bcl-2 family members, J Cell Biol, vol.185, pp.279-290, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00450677

F. Gautier, Y. Guillemin, P. F. Cartron, T. Gallenne, N. Cauquil et al., Bax activation by engagement with, then release from, the BH3 binding site of Bcl-xL, Mol Cell Biol, vol.31, pp.832-844, 2011.

M. F. Van-delft, A. H. Wei, K. D. Mason, C. J. Vandenberg, L. Chen et al., The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized, Cancer Cell, vol.10, pp.389-399, 2006.

K. E. Tagscherer, A. Fassl, B. Campos, M. Farhadi, A. Kraemer et al., Apoptosisbased treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins, Oncogene, vol.27, pp.6646-6656, 2008.

K. Okumura, S. Huang, and F. A. Sinicrope, Induction of Noxa sensitizes human colorectal cancer cells expressing Mcl-1 to the small-molecule Bcl-2/Bcl-xL inhibitor, ABT-737, Clin Cancer Res, vol.14, pp.8132-8142, 2008.

H. Zall, A. Weber, R. Besch, N. Zantl, and G. Häcker, Chemotherapeutic drugs sensitize human renal cell carcinoma cells to ABT-737 by a mechanism involving the Noxa-dependent inactivation of Mcl-1 or A1, Mol Cancer, vol.9, p.164, 2010.

L. Zhang, H. Lopez, N. M. George, X. Liu, X. Pang et al., Selective involvement of BH3-only proteins and differential targets of Noxa in diverse apoptotic pathways, Cell Death Differ, vol.18, pp.864-873, 2011.

B. A. Quinn, R. Dash, B. Azab, S. Sarkar, S. K. Das et al., Targeting Mcl-1 for the therapy of cancer, Expert Opin Investig Drugs, vol.10, pp.1397-1411, 2011.

S. A. Lakhani, A. Masud, K. Kuida, G. A. Porter, C. J. Booth et al., Caspases 3 and 7: key mediators of mitochondrial events of apoptosis, Science, vol.311, pp.847-851, 2006.

S. Tait, M. J. Parsons, F. Llambi, L. Bouchier-hayes, S. Connell et al., Resistance to caspase-independent cell death requires persistence of intact mitochondria, Dev Cell, vol.18, pp.802-813, 2010.

F. Llambi, T. Moldoveanu, S. Tait, L. Bouchier-hayes, J. Temirov et al., A unified model of mammalian BCL-2 protein family interactions at the mitochondria, Mol Cell, vol.44, pp.517-531, 2011.

N. Buron, M. Porceddu, M. Brabant, D. Desgué, C. Racoeur et al., Use of human cancer cell lines mitochondria to explore the mechanisms of BH3 peptides and ABT-737-induced mitochondrial membrane permeabilization, PLoS One, vol.5, p.9924, 2010.

J. H. Song, K. Kandasamy, and A. S. Kraft, ABT-737 induces expression of the death receptor 5 and sensitizes human cancer cells to TRAIL-induced apoptosis, J Biol Chem, vol.283, pp.25003-25013, 2008.

J. H. Song, K. Kandasamy, M. Zemskova, Y. Lin, and A. S. Kraft, The BH3 mimetic ABT-737 induces cancer cell senescence, Cancer Res, vol.71, pp.506-515, 2011.

C. Stevens, L. Thangue, and N. B. , The emerging role of E2F-1 in the DNA damage response and checkpoint control, DNA Repair (Amst), vol.3, pp.1071-1079, 2004.

S. Polager and D. Ginsberg, p53 and E2f: partners in life and death, Nat Rev Cancer, vol.9, pp.738-748, 2009.

S. Polager and D. Ginsberg, E2F-at the crossroads of life and death, Trends Cell Biol, vol.18, pp.528-535, 2008.

P. J. Iaquinta and J. A. Lees, Life and death decisions by the E2F transcription factors, Curr Opin Cell Biol, vol.19, pp.649-657, 2007.

T. Stiewe and B. M. Pützer, Role of the p53-homologue p73 in E2F1-induced apoptosis, Nat Genet, vol.26, pp.464-469, 2000.

T. Hershko and D. Ginsberg, Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis, J Biol Chem, vol.279, pp.8627-8634, 2004.

Y. Zhao, J. Tan, L. Zhuang, X. Jiang, E. T. Liu et al., Inhibitors of histone deacetylases target the Rb-E2F1 pathway for apoptosis induction through activation of proapoptotic protein Bim, Proc Natl Acad Sci, vol.102, pp.16090-16095, 2005.

H. Hao, Y. Dong, M. T. Bowling, J. G. Gomez-gutierrez, H. S. Zhou et al., E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation, BMC Cancer, vol.7, p.24, 2007.

G. Ambrosini, E. B. Sambol, D. Carvajal, L. T. Vassilev, S. Singer et al., Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1, Oncogene, vol.26, pp.3473-3481, 2007.

S. K. Peirce and H. W. Findley, The MDM2 antagonist nutlin-3 sensitizes p53-null neuroblastoma cells to doxorubicin via E2F1 and TAp73, Int J Oncol, vol.34, pp.1395-1402, 2009.

B. An and Q. P. Dou, Cleavage of retinoblastoma protein during apoptosis: an interleukin 1 beta-converting enzyme-like protease as candidate, Cancer Res, vol.56, pp.438-442, 1996.

A. L. Boutillier, E. Trinh, and J. P. Loeffler, Caspase-dependent cleavage of the retinoblastoma protein is an early step in neuronal apoptosis, Oncogene, vol.19, pp.2171-2178, 2000.

C. L. Fattman, S. M. Delach, Q. P. Dou, and J. De, Sequential two-step cleavage of the retinoblastoma protein by caspase-3/-7 during etoposide-induced apoptosis, Oncogene, vol.20, pp.2918-2926, 2001.

F. A. Dick, Structure-function analysis of the retinoblastoma tumor suppressor protein-is the whole a sum of its parts?, Cell Div, vol.2, p.26, 2007.

M. J. Cecchini and F. A. Dick, The biochemical basis of CDK phosphorylation-independent regulation of E2F1 by the retinoblastoma protein, Biochem J, vol.434, pp.297-308, 2011.

L. M. Julian, O. Palander, L. A. Seifried, J. Foster, and F. A. Dick, Characterization of an E2F1-specific binding domain in pRB and its implications for apoptotic regulation, Oncogene, vol.27, pp.1572-1579, 2008.

A. Ianari, T. Natale, E. Calo, E. Ferretti, E. Alesse et al., Proapoptotic function of the retinoblastoma tumor suppressor protein, Cancer Cell, vol.15, pp.184-194, 2009.

T. C. Albershardt, B. L. Salerni, R. S. Soderquist, D. Bates, A. A. Pletnev et al., Multiple BH3 mimetics antagonize anti-apoptotic MCL1 by inducing the endoplasmic reticulum stress response and up-regulating BH3-only protein NOXA, J Biol Chem, vol.28, pp.24882-24895, 2011.

K. Katsuda, M. Kataoka, F. Uno, T. Murakami, T. Kondo et al., Activation of caspase-3 and cleavage of Rb are associated with p16-mediated apoptosis in human non-small cell lung cancer cells, Oncogene, vol.21, pp.2108-2113, 2002.

W. R. Sellers, B. G. Novitch, S. Miyake, A. Heith, G. A. Otterson et al., Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth, Genes Dev, vol.12, pp.95-106, 1998.

O. Gjoerup, D. Zaveri, and T. M. Roberts, Induction of p53-independent apoptosis by simian virus 40 small t antigen, J Virol, vol.75, pp.9142-9155, 2001.

K. Helin, C. L. Wu, A. R. Fattaey, J. A. Lees, B. D. Dynlacht et al., Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative trans-activation, Genes Dev, vol.7, pp.1850-1861, 1993.

W. S. Pear, J. P. Miller, L. Xu, J. C. Pui, B. Soffer et al., Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow, Blood, vol.92, pp.3780-3792, 1998.

F. Braun, J. Bertin-ciftci, A. Gallouet, J. Millour, and P. Juin, Serum-nutrient starvation induces cell death mediated by Bax and Puma that is counteracted by p21 and unmasked by Bcl-xL inhibition, PLoS One, vol.6, p.23577, 2011.

B. Barré and N. D. Perkins, The Skp2 promoter integrates signaling through the NF-kappaB, p53, and Akt/GSK3beta pathways to regulate autophagy and apoptosis, Mol Cell, vol.38, pp.524-538, 2010.