B. Vogelstein and K. W. Kinzler, Cancer genes and the pathways they control, Nature Medicine, vol.10, issue.8, pp.789-799, 2004.

R. A. Gatenby and R. J. Gillies, Why do cancers have high aerobic glycolysis?, Nature Reviews Cancer, vol.4, issue.11, pp.891-899, 2004.

O. Warburg, On the origin of cancer cells, Science, vol.123, issue.3191, pp.309-314, 1956.

R. J. Deberardinis, N. Sayed, D. Ditsworth, and C. B. Thompson, Brick by brick: metabolism and tumor cell growth, Current Opinion in Genetics and Development, vol.18, issue.1, pp.54-61, 2008.

G. L. Semenza, Regulation of metabolism by hypoxiainducible factor 1, Cold Spring Harbor Symposia on Quantitative Biology, vol.76, pp.347-353, 2011.

J. W. Kim, I. Tchernyshyov, G. L. Semenza, and C. V. Dang, HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia, Cell Metabolism, vol.3, issue.3, pp.177-185, 2006.

V. R. Fantin, J. St-pierre, and P. Leder, Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance, Cancer Cell, vol.9, issue.6, pp.425-434, 2006.

A. Le, C. R. Cooper, and A. M. Gouw, Inhibition of lactate dehydrogenase A induces oxidative stress and inhibits tumor progression, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.2037-2042, 2010.

M. G. Vander-heiden, L. C. Cantley, and C. B. Thompson, Understanding the warburg effect: the metabolic requirements of cell proliferation, Science, vol.324, issue.5930, pp.1029-1033, 2009.

T. Noguchi, H. Inoue, and T. Tanaka, The M1-and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing, Journal of Biological Chemistry, vol.261, issue.29, pp.13807-13812, 1986.

S. Mazurek, C. B. Boschek, F. Hugo, and E. Eigenbrodt, Pyruvate kinase type M2 and its role in tumor growth and spreading, Seminars in Cancer Biology, vol.15, issue.4, pp.300-308, 2005.

P. Gao, I. Tchernyshyov, and T. C. Chang, C-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism, Nature, vol.458, issue.7239, pp.762-765, 2009.

J. M. Estrela, A. Ortega, and E. Obrador, Glutathione in cancer biology and therapy, Critical Reviews in Clinical Laboratory Sciences, vol.43, issue.2, pp.143-181, 2006.

R. J. Deberardinis and T. Cheng, Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer, Cell Biology and Cancer, vol.29, issue.3, pp.313-324, 2010.

P. Nicklin, P. Bergman, and B. Zhang, Bidirectional transport of amino acids regulates mTOR and autophagy, Cell, vol.136, issue.3, pp.521-534, 2009.

S. D. Larson, J. Li, D. H. Chung, and B. M. Evers, Molecular mechanisms contributing to glutamine-mediated intestinal cell survival, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol.293, issue.6, pp.1262-1271, 2007.

C. H. Eng, K. Yu, J. Lucas, E. White, and R. T. Abraham, Ammonia derived from glutaminolysis is a diffusible regulator of autophagy, Science Signaling, vol.3, issue.119, p.31, 2010.

U. E. Martinez-outschoorn, S. Pavlides, and A. Howell, Stromal-epithelial metabolic coupling in cancer: integrating autophagy and metabolism in the tumor microenvironment, International Journal of Biochemistry and Cell Biology, vol.43, issue.7, pp.1045-1051, 2011.

C. Capparelli, D. Whitaker-menezes, and C. Guido, CTGF drives autophagy, glycolysis and senescence in cancerassociated fibroblasts via HIF1 activation, metabolically promoting tumor growth, Cell Cycle, vol.11, issue.12, pp.2272-2284, 2012.

D. M. Brizel, T. Schroeder, and R. L. Scher, Elevated tumor lactate concentrations predict for an increased risk of metastases in head-and-neck cancer, International Journal of Radiation Oncology Biology Physics, vol.51, issue.2, pp.349-353, 2001.

S. Walenta, M. Wetterling, and M. Lehrke, High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers, Cancer Research, vol.60, issue.4, pp.916-921, 2000.

K. Fischer, P. Hoffmann, and S. Voelkl, Inhibitory effect of tumor cell-derived lactic acid on human T cells, Blood, vol.109, issue.9, pp.3812-3819, 2007.

E. Gottfried, M. Kreutz, and A. Mackensen, Tumor metabolism as modulator of immune response and tumor progression, Seminars in Cancer Biology, vol.22, issue.4, pp.335-341, 2012.

C. Frezza, P. J. Pollard, and E. Gottlieb, Inborn and acquired metabolic defects in cancer, Journal of Molecular Medicine, vol.89, issue.3, pp.213-220, 2011.

I. P. Tomlinson, N. A. Alam, and A. J. Rowan, Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer the multiple leiomyoma consortium, Nature Genetics, vol.30, issue.4, pp.406-410, 2002.

E. Gottlieb and I. P. Tomlinson, Mitochondrial tumour suppressors: a genetic and biochemical update, Nature Reviews Cancer, vol.5, issue.11, pp.857-866, 2005.

D. W. Parsons, S. Jones, and X. Zhang, An integrated genomic analysis of human glioblastoma multiforme, Science, vol.321, issue.5897, pp.1807-1812, 2008.

H. Yan, D. W. Parsons, and G. Jin, IDH1 and IDH2 mutations in gliomas, New England Journal of Medicine, vol.360, issue.8, pp.765-773, 2009.

E. R. Mardis, L. Ding, and D. J. Dooling, Recurring mutations found by sequencing an acute myeloid leukemia genome, New England Journal of Medicine, vol.361, issue.11, pp.1058-1066, 2009.

L. Dang, D. W. White, and S. Gross, Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, issue.7274, pp.739-744, 2009.

R. Chowdhury, K. K. Yeoh, and Y. M. Tian, The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases, EMBO Reports, vol.12, issue.5, pp.463-469, 2011.

W. Xu, H. Yang, and Y. Liu, Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of -ketoglutaratedependent dioxygenases, Cancer Cell, vol.19, issue.1, pp.17-30, 2011.

M. E. Figueroa, O. Abdel-wahab, and C. Lu, Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation, Cancer Cell, vol.18, issue.6, pp.553-567, 2010.

C. Lu, P. S. Ward, and G. S. Kapoor, IDH mutation impairs histone demethylation and results in a block to cell differentiation, Nature, vol.483, pp.474-478, 2012.

M. Sasaki, C. B. Knobbe, and J. C. Munger, IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics, Nature, vol.488, pp.656-659, 2012.

A. R. Mullen, W. W. Wheaton, and E. S. Jin, Reductive carboxylation supports growth in tumour cells with defective mitochondria, Nature, vol.481, pp.385-388, 2012.

C. M. Metallo, P. A. Gameiro, and E. L. Bell, Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia, Nature, vol.481, pp.380-384, 2011.

W. R. Bruce, H. Van-der, and . Gaag, A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo, Nature, vol.199, issue.4888, pp.79-80, 1963.

C. H. Park, D. E. Bergsagel, and E. A. Mcculloch, Mouse myeloma tumor stem cells: a primary cell culture assay, Journal of the National Cancer Institute, vol.46, issue.2, pp.411-422, 1971.

A. Hamburger and S. S. Salmon, Primary bioassay of human myeloma stem cells, Journal of Clinical Investigation, vol.60, issue.4, pp.846-854, 1977.

J. E. Dick, Breast cancer stem cells revealed, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.3547-3549, 2003.

L. Vermeulen, M. Todaro, F. De-sousa, and . Mello, Singlecell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.13427-13432, 2008.

T. Lapidot, C. Sirard, and J. Vormoor, A cell initiating human acute myeloid leukaemia after transplantation into SCID mice, Nature, vol.367, issue.6464, pp.645-648, 1994.

M. Al-hajj, M. S. Wicha, A. Benito-hernandez, S. J. Morrison, and M. F. Clarke, Prospective identification of tumorigenic breast cancer cells, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.3983-3988, 2003.

S. K. Singh, C. Hawkins, and I. D. Clarke, Identification of human brain tumour initiating cells, Nature, vol.432, issue.7015, pp.396-401, 2004.

M. D. Taylor, H. Poppleton, and C. Fuller, Radial glia cells are candidate stem cells of ependymoma, Cancer Cell, vol.8, issue.4, pp.323-335, 2005.

C. A. O'brien, A. Pollett, S. Gallinger, and J. E. Dick, A human colon cancer cell capable of initiating tumour growth in immunodeficient mice, Nature, vol.445, issue.7123, pp.106-110, 2007.

M. Hermann, R. Margreiter, and P. Hengster, Molecular and cellular key players in human islet transplantation, Journal of Cellular and Molecular Medicine, vol.11, issue.3, pp.398-415, 2007.

P. P. Szotek, H. L. Chang, and K. Brennand, Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.12469-12473, 2008.

A. Suetsugu, M. Nagaki, H. Aoki, T. Motohashi, T. Kunisada et al., Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells, Biochemical and Biophysical Research Communications, vol.351, issue.4, pp.820-824, 2006.

L. Patrawala, T. Calhoun, and R. Schneider-broussard, Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells, Oncogene, vol.25, issue.12, pp.1696-1708, 2006.

A. Eramo, F. Lotti, and G. Sette, Identification and expansion of the tumorigenic lung cancer stem cell population, Cell Death and Differentiation, vol.15, issue.3, pp.504-514, 2008.

T. Schatton, G. F. Murphy, and N. Y. Frank, Identification of cells initiating human melanomas, Nature, vol.451, issue.7176, pp.345-349, 2008.

J. E. Visvader and G. J. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions, Nature Reviews Cancer, vol.8, issue.10, pp.755-768, 2008.

F. Barabé, J. A. Kennedy, K. J. Hope, and J. E. Dick, Modeling the initiation and progression of human acute leukemia in mice, Science, vol.316, issue.5824, pp.600-604, 2007.

E. A. Clark, T. R. Golub, E. S. Lander, and R. O. Hynes, Genomic analysis of metastasis reveals an essential role for RhoC, Nature, vol.406, issue.6795, pp.532-535, 2000.

S. Sell, On the stem cell origin of cancer, American Journal of Pathology, vol.176, issue.6, pp.2584-2494, 2010.

H. Kalirai and R. B. Clarke, Human breast epithelial stem cells and their regulation, Journal of Pathology, vol.208, issue.1, pp.7-16, 2006.

R. Galli, E. Binda, and U. Orfanelli, Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma, Cancer Research, vol.64, issue.19, pp.7011-7021, 2004.

J. C. Cheng, K. Kinjo, and D. R. Judelson, CREB is a critical regulator of normal hematopoiesis and leukemogenesis, Blood, vol.111, issue.3, pp.1182-1192, 2008.

K. Matsumoto, T. Arao, and K. Tanaka, mTOR signal and hypoxia-inducible factor-1 regulate CD133 expression in cancer cells, Cancer Research, vol.69, pp.7160-7164, 2009.

C. E. Griguer, C. R. Oliva, and E. Gobin, CD133 is a marker of bioenergetic stress in human glioma, PLoS ONE, vol.3, issue.11, 2008.

J. Dahlstrand, V. P. Collins, and U. Lendahl, Expression of the class VI intermediate filament nestin in human central nervous system tumors, Cancer Research, vol.52, issue.19, pp.5334-5341, 1992.

M. J. Son, K. Woolard, D. H. Nam, J. Lee, and H. A. Fine, SSEA-1 Is an enrichment marker for tumor-initiating cells in human glioblastoma, Cell Stem Cell, vol.4, issue.5, pp.440-452, 2009.

W. Zhou, M. Choi, and D. Margineantu, HIF1 induced switch from bivalent to exclusively glycolytic metabolism during ESCto-EpiSC/hESC transition, The EMBO Journal, vol.31, pp.2103-2116, 2012.

H. J. Leese, J. Conaghan, K. L. Martin, and K. Hardy, Early human embryo metabolism, BioEssays, vol.15, issue.4, pp.259-264, 1993.

D. Rieger and N. M. Loskutoff, Changes in the metabolism of glucose, pyruvate, glutamine and glycine during maturation of cattle oocytes in vitro, Journal of Reproduction and Fertility, vol.100, issue.1, pp.257-262, 1994.

S. Varum, A. S. Rodrigues, and M. B. Moura, Energy metabolism in human pluripotent stem cells and their differentiated counterparts, PLoS ONE, vol.6, issue.6, 2011.

M. Morfouace, L. Lalier, and M. Bahut, Comparison of spheroids formed by rat glioma stem cells and neural stem cells reveals differences in glucose metabolism and promising therapeutic applications, Journal of Biological Chemistry, vol.287, pp.33664-33674, 2012.

S. Weinhouse, Glycolysis, respiration, and anomalous gene expression in experimental hepatomas: G.H.A. Clowes memorial lecture, Cancer Research, vol.32, issue.10, pp.2007-2016, 1972.

E. Vlashi, C. Lagadec, and L. Vergnes, Metabolic state of glioma stem cells and nontumorigenic cells, Proceedings of the National Academy of Sciences of the United States of America, vol.108, issue.38, pp.16062-16067, 2011.

W. C. Zhang, N. Shyh-chang, and H. Yang, Glycine decarboxylase activity drives non-small cell Lung cancer tumorinitiating cells and tumorigenesis, Cell, vol.148, issue.1, pp.259-272, 2012.

V. K. Rajasekhar and M. C. Vemuri, Molecular insights into the function, fate, and prospects of stem cells, Stem Cells, vol.23, issue.8, pp.1212-1220, 2005.

C. J. Baglole, D. M. Ray, and S. H. Bernstein, More than structural cells, fibroblasts create and orchestrate the tumor microenvironment, Immunological Investigations, vol.35, issue.3-4, pp.297-325, 2006.

K. A. Moore and I. R. Lemischka, Stem cells and their niches, Science, vol.311, issue.5769, pp.1880-1885, 2006.

M. J. Bissell and M. A. Labarge, Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?, Cancer Cell, vol.7, issue.1, pp.17-23, 2005.

L. Li and W. B. Neaves, Normal stem cells and cancer stem cells: the niche matters, Cancer Research, vol.66, issue.9, pp.4553-4557, 2006.

L. Oliver, C. Olivier, F. B. Marhuenda, M. Campone, and F. M. Vallette, Hypoxia and the malignant glioma microenvironment: regulation and implications for therapy, Current Molecular Pharmacology, vol.2, issue.3, pp.263-284, 2009.

S. Seidel, B. K. Garvalov, and V. Wirta, A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2, Brain, vol.133, issue.4, pp.983-995, 2010.

A. H. Shih and E. C. Holland, Notch signaling enhances nestin expression in gliomas, Neoplasia, vol.8, issue.12, pp.1072-1082, 2006.

A. B. Hjelmeland, Q. Wu, and J. M. Heddleston, Acidic stress promotes a glioma stem cell phenotype, Cell Death and Differentiation, vol.18, issue.5, pp.829-840, 2011.

J. M. Heddleston, Z. Li, J. D. Lathia, S. Bao, A. B. Hjelmeland et al., Hypoxia inducible factors in cancer stem cells, British Journal of Cancer, vol.102, issue.5, pp.789-795, 2010.

J. T. Erler, K. L. Bennewith, and M. Nicolau, Lysyl oxidase is essential for hypoxia-induced metastasis, Nature, vol.440, issue.7088, pp.1222-1226, 2006.

M. C. Brahimi-horn, J. Chiche, and J. Pouysségur, Hypoxia and cancer, Journal of Molecular Medicine, vol.85, issue.12, pp.1301-1307, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319797

R. P. Hill, D. T. Marie-egyptienne, and D. W. Hedley, Cancer stem cells, hypoxia and metastasis, Seminars in Radiation Oncology, vol.19, issue.2, pp.106-111, 2009.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, vol.144, issue.5, pp.646-674, 2011.

L. Lalier, P. F. Cartron, and P. Juin, Bax activation and mitochondrial insertion during apoptosis, Apoptosis, vol.12, issue.5, pp.887-896, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00131560

G. Liu, X. Yuan, and Z. Zeng, Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma, Molecular Cancer, vol.5, p.67, 2006.

C. H. Yi, H. Pan, and J. Seebacher, Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival, Cell, vol.146, issue.4, pp.607-620, 2011.

A. Ashkenazi, Targeting death and decoy receptors of the tumour-necrosis factor superfamily, International Journal of Cell Biology, vol.2, issue.6, pp.420-430, 2002.

S. W. Fesik, Promoting apoptosis as a strategy for cancer drug discovery, Nature Reviews Cancer, vol.5, issue.11, pp.876-885, 2005.

L. H. Wilt, J. Kroon, G. Jansen, S. Jong, G. J. Peters et al., Bortezomib and TRAIL: a perfect match for apoptotic elimination of tumour cells?, Critical Reviews in Oncology, 2012.

M. M. Lovric and C. J. Hawkins, TRAIL treatment provokes mutations in surviving cells, Oncogene, vol.29, issue.36, pp.5048-5060, 2010.

J. Domen, S. H. Cheshier, and I. L. Weissman, The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of BCL-2 increases both their number and repopulation potential, Journal of Experimental Medicine, vol.191, issue.2, pp.253-263, 2000.

J. Domen, K. L. Gandy, and I. L. Weissman, Systemic overexpression of BCL-2 in the hematopoietic system protects transgenic mice from the consequences of lethal irradiation, Blood, vol.91, issue.7, pp.2272-2282, 1998.

J. Shi, L. F. Parada, and S. G. Kernie, Bax limits adult neural stem cell persistence through caspase and IP3 receptor activation, Cell Death and Differentiation, vol.12, issue.12, pp.1601-1612, 2005.

K. E. Tagscherer, A. Fassl, and B. Campos, Apoptosisbased treatment of glioblastomas with ABT-737, a novel small molecule inhibitor of Bcl-2 family proteins, Oncogene, vol.27, issue.52, pp.6646-6656, 2008.

S. Bao, Q. Wu, and R. E. Mclendon, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, vol.444, issue.7120, pp.756-760, 2006.

R. Martinez, G. Schackert, R. Yaya-tur, I. Rojas-marcos, J. G. Herman et al., Frequent hypermethylation of the DNA repair gene MGMT in long-term survivors of glioblastoma multiforme [1], Journal of Neuro-Oncology, vol.83, issue.1, pp.91-93, 2007.

R. Rodriguez, R. Rubio, and M. Masip, Loss of p53 induces tumorigenesis in p21-deficient mesenchymal stem cells1 2, Neoplasia, vol.11, issue.4, pp.397-407, 2009.

D. Rubio, S. Garcia, and M. F. Paz, Molecular characterization of spontaneous mesenchymal stem cell transformation, PLoS ONE, vol.3, issue.1, 2008.

A. Viale, F. Franco, and A. Orleth, Cell-cycle restriction limits DNA damage and maintains self-renewal of leukaemia stem cells, Nature, vol.457, issue.7225, pp.51-56, 2009.

L. Oliver, E. Hue, and J. Rossignol, Distinct roles of bcl-2 and bcl-xl in the apoptosis of human bone marrow mesenchymal stem cells during differentiation, PLoS ONE, vol.6, issue.5, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01968410

D. Capper, T. Gaiser, and C. Hartmann, Stem-cell-like glioma cells are resistant to TRAIL/Apo2L and exhibit down-regulation of caspase-8 by promoter methylation, Acta neuropathologica, vol.117, issue.4, pp.445-456, 2009.

S. Kahana, S. Finniss, and S. Cazacu, Proteasome inhibitors sensitize glioma cells and glioma stem cells to TRAIL-induced apoptosis by PKC -dependent downregulation of AKT and XIAP expressions, Cellular Signalling, vol.23, issue.8, pp.1348-1357, 2011.

S. Yin, L. Xu, S. Bandyopadhyay, S. Sethi, and K. B. Reddy, Cisplatin and TRAIL enhance breast cancer stem cell death, International Journal of Oncology, vol.39, issue.4, pp.891-898, 2011.

R. T. Sussman, M. S. Ricci, L. S. Hart, Y. S. Shi, and W. S. El-deiry, Chemotherapy-resistant side-population of colon cancer cells has a higher sensitivity to TRAIL than the non-SP, a higher expression of c-Myc and TRAIL-receptor DR4, Cancer Biology and Therapy, vol.6, issue.9, pp.1490-1495, 2007.

W. A. Woodward, M. S. Chen, F. Behbod, M. P. Alfaro, T. A. Buchholz et al., WNT/ -catenin mediates radiation resistance of mouse mammary progenitor cells, Proceedings of the National Academy of Sciences of the United States of America, vol.104, issue.2, pp.618-623, 2007.

D. Chuang and R. Ishitani, A role for GAPDH in apoptosis and neurodegeneration, Nature Medicine, vol.2, pp.609-610, 1996.

J. Boada, T. Roig, and X. Perez, Cells overexpressing fructose-2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress, FEBS Letters, vol.480, issue.2-3, pp.261-264, 2000.

N. Jelluma, X. Yang, D. Stokoe, G. I. Evan, T. B. Dansen et al., Glucose withdrawal induces oxidative stress followed by apoptosis in glioblastoma cells but not in normal human astrocytes, Molecular Cancer Research, vol.4, issue.5, pp.319-330, 2006.

A. Caro-maldonado, S. W. Tait, and S. Ramírez-peinado, Glucose deprivation induces an atypical form of apoptosis mediated by caspase-8 in Bax-, Bak-deficient cells, Cell Death and Differentiation, vol.17, issue.8, pp.1335-1344, 2010.

J. C. Maher, A. Krishan, and T. J. Lampidis, Greater cell cycle inhibition and cytotoxicity induced by 2-deoxy-D-glucose in tumor cells treated under hypoxic vs aerobic conditions, Cancer Chemotherapy and Pharmacology, vol.53, issue.2, pp.116-122, 2004.

D. Singh, A. K. Banerji, and B. S. Dwarakanath, Optimizing cancer radiotherapy with 2-deoxy-D-glucose: dose escalation studies in patients with glioblastoma multiforme, Strahlentherapie und Onkologie, vol.181, pp.507-514, 2005.

S. Bonnet, S. L. Archer, and J. Allalunis-turner, A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth, Cancer Cell, vol.11, issue.1, pp.37-51, 2007.

W. Cao, S. Yacoub, and K. T. Shiverick, Dichloroacetate (DCA) sensitizes both wild-type and over expressing bcl-2 prostate cancer cells in vitro to radiation, Prostate, vol.68, issue.11, pp.1223-1231, 2008.

J. Y. Wong, G. S. Huggins, M. Debidda, N. C. Munshi, and I. Vivo, Dichloroacetate induces apoptosis in endometrial cancer cells, Gynecologic Oncology, vol.109, issue.3, pp.394-402, 2008.

R. C. Sun, M. Fadia, J. E. Dahlstrom, C. R. Parish, P. G. Board et al., Reversal of the glycolytic phenotype by dichloroacetate inhibits metastatic breast cancer cell growth in vitro and in vivo, Breast Cancer Research and Treatment, vol.120, issue.1, pp.253-260, 2010.

P. W. Stacpoole, T. L. Kurtz, Z. Han, and T. Langaee, Role of dichloroacetate in the treatment of genetic mitochondrial diseases, Advanced Drug Delivery Reviews, vol.60, pp.1478-1487, 2008.

E. D. Michelakis, G. Sutendra, and P. Dromparis, Metabolic modulation of glioblastoma with dichloroacetate, Science Translational Medicine, vol.2, issue.31, pp.31-34, 2010.

K. Bensaad, A. Tsuruta, and M. A. Selak, TIGAR, a p53-inducible regulator of glycolysis and apoptosis, Cell, vol.126, issue.1, pp.107-120, 2006.

D. R. Green and J. E. Chipuk, p53 and metabolism: inside the TIGAR, Cell, vol.126, issue.1, pp.30-32, 2006.

A. Steták, R. Veress, J. Ovádi, P. Csermely, G. Kéri et al., Nuclear translocation of the tumor marker pyruvate kinase M2 induces programmed cell death, Cancer Research, vol.67, issue.4, pp.1602-1608, 2007.

G. A. Spoden, U. Rostek, S. Lechner, M. Mitterberger, S. Mazurek et al., Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply, Experimental Cell Research, vol.315, issue.16, pp.2765-2774, 2009.

M. B. Boxer, J. K. Jiang, and M. G. Vander-heiden, Evaluation of substituted N,N -diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase, Journal of Medicinal Chemistry, vol.53, issue.3, pp.1048-1055, 2010.

S. G. Piccirillo, B. A. Reynolds, and N. Zanetti, Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells, Nature, vol.444, issue.7120, pp.761-765, 2006.