A. Grakoui, The immunological synapse: a molecular machine controlling T cell activation, Science, vol.285, pp.221-227, 1999.

C. R. Monks, B. A. Freiberg, H. Kupfer, N. Sciaky, and A. Kupfer, Threedimensional segregation of supramolecular activation clusters in T cells, Nature, vol.395, pp.82-86, 1998.

M. Huse, B. F. Lillemeier, M. S. Kuhns, D. S. Chen, and M. M. Davis, T cells use two directionally distinct pathways for cytokine secretion, Nat. Immunol, vol.7, pp.247-255, 2006.

K. Chemin, Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity, J. Immunol, vol.189, pp.2159-2168, 2012.

N. Blanchard, TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex, J. Immunol, vol.168, pp.3235-3241, 2002.

M. Mittelbrunn, Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells, Nat. Commun, vol.2, p.282, 2011.

K. Choudhuri, Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse, Nature, vol.507, pp.118-123, 2014.

F. Bertrand, Activation of the ancestral polarity regulator protein kinase C zeta at the immunological synapse drives polarization of Th cell secretory machinery toward APCs, J. Immunol, vol.185, pp.2887-2894, 2010.

M. Tourret, T cell polarity at the immunological synapse is required for CD154-dependent IL-12 secretion by dendritic cells, J. Immunol, vol.185, pp.6809-6818, 2010.

H. Soares, R. Lasserre, and A. Alcover, Orchestrating cytoskeleton and intracellular vesicle traffic to build functional immunological synapses, Immunol. Rev, vol.256, pp.118-132, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01371059

G. Bonello, Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment, J. Cell. Sci, vol.117, pp.1009-1016, 2004.

L. I. Ehrlich, P. J. Ebert, M. F. Krummel, A. Weiss, and M. M. Davis, Dynamics of p56lck translocation to the T cell immunological synapse following agonist and antagonist stimulation, Immunity, vol.17, pp.809-822, 2002.

P. Larghi, VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites, Nat. Immunol, vol.14, pp.723-731, 2013.

M. A. Purbhoo, Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse, Sci. Signal, vol.3, p.36, 2010.

H. Soares, Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse, J. Exp. Med, vol.210, pp.2415-2433, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-01371057

D. J. Williamson, Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events, Nat. Immunol, vol.12, pp.655-662, 2011.

V. Das, Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse, Immunity, vol.20, pp.577-588, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00137478

F. Finetti, Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system, J. cell Sci, vol.127, pp.1924-1937, 2014.

A. Onnis, F. Finetti, and C. T. Baldari, Vesicular trafficking to the immune synapse: how to assemble receptor-tailored pathways from a basic building set, Front. Immunol, vol.7, p.50, 2016.

B. Keller, Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT, J. Exp. Med, vol.213, pp.1185-1199, 2016.

M. Mingueneau, Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor, Immunity, vol.31, pp.197-208, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432068

W. Zhang, J. Sloan-lancaster, J. Kitchen, R. P. Trible, and L. E. Samelson, LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation, Cell, vol.92, pp.83-92, 1998.

W. Zhang, Essential role of LAT in T cell development, Immunity, vol.10, pp.323-332, 1999.

J. M. Carpier, Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation, J. Exp. Med, vol.215, pp.1245-1265, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02446749

R. Roncagalli, Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptorindependent TCR signaling hub, Nat. Immunol, vol.15, pp.384-392, 2014.

T. M. Witkos and M. Lowe, Recognition and tethering of transport vesicles at the Golgi apparatus, Curr. Opin. Cell Biol, vol.47, pp.16-23, 2017.

A. K. Gillingham and S. Munro, Finding the golgi: golgin coiled-coil proteins show the way, Trends Cell Biol, vol.26, pp.399-408, 2016.

M. Wong and S. Munro, Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins, Science, vol.346, p.1256898, 2014.

P. Y. Cheung and S. R. Pfeffer, Transport vesicle tethering at the trans golgi network: coiled coil proteins in action, Front. Cell Dev. Biol, vol.4, p.18, 2016.

A. K. Gillingham, A. H. Tong, C. Boone, and S. Munro, The GTPase Arf1p and the ER to Golgi cargo receptor Erv14p cooperate to recruit the golgin Rud3p to the cis-Golgi, J. Cell Biol, vol.167, pp.281-292, 2004.

J. Cardenas, S. Rivero, B. Goud, M. Bornens, and R. M. Rios, Golgi localisation of GMAP210 requires two distinct cis-membrane binding mechanisms, BMC Biol, vol.7, p.56, 2009.

G. Drin, V. Morello, J. F. Casella, P. Gounon, and B. Antonny, Asymmetric tethering of flat and curved lipid membranes by a golgin, Science, vol.320, pp.670-673, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00311958

G. Drin, A general amphipathic alpha-helical motif for sensing membrane curvature, Nat. Struct. Mol. Biol, vol.14, pp.138-146, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00171994

M. Magdeleine, A filter at the entrance of the Golgi that selects vesicles according to size and bulk lipid composition, 2016.

J. A. Follit, The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex, PLoS Genet, vol.4, p.1000315, 2008.

D. Galgano, The T cell IFT20 interactome reveals new players in immune synapse assembly, J. Cell Sci, vol.130, pp.1110-1121, 2017.

W. J. Monis, V. Faundez, and G. J. Pazour, BLOC-1 is required for selective membrane protein trafficking from endosomes to primary cilia, J. Cell Biol, vol.216, pp.2131-2150, 2017.

S. H. Lee, Export of membrane proteins from the Golgi complex to the primary cilium requires the kinesin motor, KIFC1, FASEB J, vol.32, pp.957-968, 2018.

C. Hivroz, P. Larghi, M. Jouve, and L. Ardouin, Purification of LAT-containing membranes from resting and activated T lymphocytes, Methods Mol. Biol, vol.1584, pp.355-368, 2017.

T. S. Finco, T. Kadlecek, W. Zhang, L. E. Samelson, and A. Weiss, LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway, Immunity, vol.9, pp.617-626, 1998.

S. Sorokin, Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells, J. Cell Biol, vol.15, pp.363-377, 1962.

R. M. Rios, A peripheral protein associated with the cis-Golgi network redistributes in the intermediate compartment upon brefeldin A treatment, J. Cell Biol, vol.125, pp.997-1013, 1994.

J. C. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. M. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.443, pp.462-465, 2006.

H. Ueda, M. K. Morphew, J. R. Mcintosh, and M. Davis, CD4+ T-cell synapses involve multiple distinct stages, Proc. Natl Acad. Sci. USA, vol.108, pp.17099-17104, 2011.

L. Balagopalan, Plasma membrane LAT activation precedes vesicular recruitment defining two phases of early T-cell activation, Nat. Commun, vol.9, p.2013, 2018.

B. J. Jasmin, J. Cartaud, M. Bornens, and J. P. Changeux, Golgi apparatus in chick skeletal muscle: changes in its distribution during end plate development and after denervation, Proc. Natl Acad. Sci. USA, vol.86, pp.7218-7222, 1989.

R. Roncagalli, Lymphoproliferative disorders involving T helper effector cells with defective LAT signalosomes, Semin. Immunopathol, vol.32, pp.117-125, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00553492

R. M. Rios, A. Sanchis, A. M. Tassin, C. Fedriani, and M. Bornens, GMAP-210 recruits gamma-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation, Cell, vol.118, pp.323-335, 2004.

K. Sato, P. Roboti, A. A. Mironov, and M. Lowe, Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210, Mol. Biol. Cell, vol.26, pp.537-553, 2015.

N. B. Martin-cofreces, End-binding protein 1 controls signal propagation from the T cell receptor, EMBO J, vol.31, pp.4140-4152, 2012.

F. Finetti, Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse, Nat. Cell Biol, vol.11, pp.1332-1339, 2009.

O. I. Vivar, IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo, Proc. Natl Acad. Sci. USA, vol.113, pp.386-391, 2016.

C. Infante, F. Ramos-morales, C. Fedriani, M. Bornens, and R. M. Rios, GMAP-210, A cis-Golgi network-associated protein, is a minus end microtubule-binding protein, J. Cell Biol, vol.145, pp.83-98, 1999.

M. Wong, A. K. Gillingham, and S. Munro, The golgin coiled-coil proteins capture different types of transport carriers via distinct N-terminal motifs, BMC Biol, vol.15, p.3, 2017.

R. Ghossoub, Septins 2, 7 and 9 and MAP4 colocalize along the axoneme in the primary cilium and control ciliary length, J. Cell Sci, vol.126, pp.2583-2594, 2013.

S. Yadav, S. Puri, and A. D. Linstedt, A primary role for Golgi positioning in directed secretion, cell polarity, and wound healing, Mol. Biol. Cell, vol.20, pp.1728-1736, 2009.

P. Smits, Lethal skeletal dysplasia in mice and humans lacking the golgin GMAP-210, New Engl. J. Med, vol.362, pp.206-216, 2010.

I. M. Bird, The skeletal phenotype of achondrogenesis type 1A is caused exclusively by cartilage defects, Development, vol.145, p.156588, 2018.

K. Pernet-gallay, The overexpression of GMAP-210 blocks anterograde and retrograde transport between the ER and the Golgi apparatus, Traffic, vol.3, pp.822-832, 2002.

P. Roboti, K. Sato, and M. Lowe, The golgin GMAP-210 is required for efficient membrane trafficking in the early secretory pathway, J. Cell Sci, vol.128, pp.1595-1606, 2015.

A. Kupfer, G. Dennert, and S. J. Singer, Polarization of the Golgi apparatus and the microtubule-organizing center within cloned natural killer cells bound to their targets, Proc. Natl Acad. Sci. USA, vol.80, pp.7224-7228, 1983.

D. Depoil, Immunological synapses are versatile structures enabling selective T cell polarization, Immunity, vol.22, pp.185-194, 2005.

C. T. Baldari and J. Rosenbaum, Intraflagellar transport: it's not just for cilia anymore, Curr. Opin. Cell Biol, vol.22, pp.75-80, 2010.

J. C. Stinchcombe, Mother centriole distal appendages mediate centrosome docking at the immunological synapse and reveal mechanistic parallels with ciliogenesis, Curr. Biol, vol.25, pp.3239-3244, 2015.

G. M. Griffiths, A. Tsun, and J. C. Stinchcombe, The immunological synapse: a focal point for endocytosis and exocytosis, J. Cell Biol, vol.189, pp.399-406, 2010.

G. Masi and C. T. Baldari, Signaling at the immune synapse: vesicular trafficking takes the stage, Cell Mol. Immunol, vol.10, pp.459-462, 2013.

S. C. Goetz and K. V. Anderson, The primary cilium: a signalling centre during vertebrate development, Nat. Rev. Genet, vol.11, pp.331-344, 2010.

N. Blanchard, V. Di-bartolo, and C. Hivroz, In the immune synapse, ZAP-70 controls T cell polarization and recruitment of signaling proteins but not formation of the synaptic pattern, Immunity, vol.17, pp.389-399, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00138115

J. W. Slot and H. J. Geuze, Cryosectioning and immunolabeling, Nat. Protoc, vol.2, pp.2480-2491, 2007.

C. Thery, S. Amigorena, G. Raposo, and A. Clayton, Isolation and characterization of exosomes from cell culture supernatants and biological fluids, Curr. Protoc. Cell Biol. Chapter, 2006.

, Acknowledgements

, ANR-10-INSB-04) and the CelTisPhyBio Labex (No. ANR-10-LBX-0038) part of the IDEX PSL, Le Baccon from PICT-IBiSA@Pasteur microscopy facility (Institut Curie, Paris), the PICT-IBiSA, member of the France-BioImaging National Research infrastructure, supported by French National Research Agency through the Investments for the Future program

A. E. , ANR-10-IDEX-0001-02 PSL* and ANR-11-LABX-0043), the Fondation pour la Recherche Médicale (FRM, FRM DEQ20140329513"). Author contributions A.E.Z. designed, performed, and analyzed most of the microscopy experiments, all functional experiments on silenced/transfected Jurkat and primary T cells, and prepared and contributed to writing the manuscript. L.B. performed experiments shown in Fig. 1a, b and Fig. 2a and contributed to writing the manuscript. J.-M.C. analyzed some microscopy experiments. S.D. prepared shRNA lentivirus and purified plasmids encoding chimeric molecules, performed qPCR analysis, performed electronic microscopy. M.M. analyzed microscopy experiments. M.W.S. performed and analyzed some experiments in ciliated cells. R.M.R, 1102.