J. Rossjohn, S. Gras, J. J. Miles, S. J. Turner, D. I. Godfrey et al., T cell antigen receptor recognition of antigen-presenting molecules, Annual review of immunology, vol.33, pp.169-200, 2015.

A. H. Courtney, W. L. Lo, A. Weiss, and . Signaling, Mechanisms of Initiation and Propagation, Trends in biochemical sciences, vol.43, pp.108-123, 2018.

M. S. Krangel, Endocytosis and recycling of the T3-T cell receptor complex. The role of T3 phosphorylation, The Journal of experimental medicine, vol.165, pp.1141-1159, 1987.

Y. Liu, M. J. Kruhlak, J. J. Hao, and S. Shaw, Rapid T cell receptor-mediated SHP-1 S591 phosphorylation regulates SHP-1 cellular localization and phosphatase activity, Journal of leukocyte biology, vol.82, pp.742-751, 2007.

S. Ono, H. Ohno, and T. Saito, Rapid turnover of the CD3 zeta chain independent of the TCR-CD3 complex in normal T cells, Immunity, vol.2, pp.639-644, 1995.

M. S. Krangel, T3 glycoprotein is functional although structurally distinct on human T-cell receptor gamma T lymphocytes, Proceedings of the National Academy of Sciences of the United States of America, vol.84, pp.3817-3821, 1987.

Y. Minami, L. E. Samelson, and R. D. Klausner, Internalization and cycling of the T cell antigen receptor. Role of protein kinase C, The Journal of biological chemistry, vol.262, pp.13342-13347, 1987.

V. Das, Activation-induced polarized recycling targets T cell antigen receptors to the immunological synapse; involvement of SNARE complexes, Immunity, vol.20, pp.577-588, 2004.
URL : https://hal.archives-ouvertes.fr/pasteur-00137478

J. P. Lauritsen, Masking of the CD3 gamma di-leucine-based motif by zeta is required for efficient T-cell receptor expression, Traffic, vol.5, pp.672-684, 2004.

U. D'oro, I. Munitic, G. Chacko, T. Karpova, J. Mcnally et al., Regulation of constitutive TCR internalization by the zeta-chain, Journal of immunology, vol.169, pp.6269-6278, 2002.

J. Dietrich, X. Hou, A. M. Wegener, L. O. Pedersen, N. Odum et al., Molecular characterization of the di-leucine-based internalization motif of the T cell receptor, The Journal of biological chemistry, vol.271, pp.11441-11448, 1996.

S. Jose, E. Borroto, A. Niedergang, F. Alcover, A. Alarcon et al., Triggering the TCR complex causes the downregulation of nonengaged receptors by a signal transduction-dependent mechanism, Immunity, vol.12, pp.161-170, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00137096

A. Monjas, A. Alcover, and B. Alarcon, Engaged and bystander T cell receptors are down-modulated by different endocytotic pathways, The Journal of biological chemistry, vol.279, pp.55376-55384, 2004.

N. Martinez-martin, T cell receptor internalization from the immunological synapse is mediated by TC21 and RhoG GTPase-dependent phagocytosis, Immunity, vol.35, pp.208-222, 2011.

S. Jose, E. Alarcon, and B. , Receptor engagement transiently diverts the T cell receptor heterodimer from a constitutive degradation pathway, The Journal of biological chemistry, vol.274, pp.33740-33746, 1999.

E. B. Compeer, A mobile endocytic network connects clathrinindependent receptor endocytosis to recycling and promotes T cell activation, Nature communications, vol.9, p.1597, 2018.

T. Welz, J. Wellbourne-wood, and E. Kerkhoff, Orchestration of cell surface proteins by Rab11, Trends in cell biology, vol.24, pp.407-415, 2014.

J. Bouchet, Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction, Journal of immunology, vol.198, pp.2967-2978, 2017.
URL : https://hal.archives-ouvertes.fr/pasteur-01519813

L. A. Stephen, The Ciliary Machinery Is Repurposed for T Cell Immune Synapse Trafficking of LCK, Developmental cell, vol.47, pp.122-132, 2018.

F. Jean and D. Pilgrim, Coordinating the uncoordinated: UNC119 trafficking in cilia, European journal of cell biology, vol.96, pp.643-652, 2017.

S. A. Ismail, Y. X. Chen, M. Miertzschke, I. R. Vetter, C. Koerner et al., Structural basis for Arl3-specific release of myristoylated ciliary cargo from UNC119, The EMBO journal, vol.31, pp.4085-4094, 2012.

L. Zimmermann, W. Paster, J. Weghuber, P. Eckerstorfer, H. Stockinger et al., Direct observation and quantitative analysis of Lck exchange between plasma membrane and cytosol in living T cells, The Journal of biological chemistry, vol.285, pp.6063-6070, 2010.

J. Millan and M. A. Alonso, MAL, a novel integral membrane protein of human T lymphocytes, associates with glycosylphosphatidylinositol-anchored proteins and Src-like tyrosine kinases, European journal of immunology, vol.28, pp.3675-3684, 1998.

R. Puertollano, The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin-Darby canine kidney cells, Proceedings of the National Academy of Sciences of the United States of America, vol.145, pp.6241-6248, 1999.

S. F. Thurston, W. A. Kulacz, S. Shaikh, J. M. Lee, and J. W. Copeland, The ability to induce microtubule acetylation is a general feature of formin proteins, PloS one, vol.7, p.48041, 2012.

J. Gaillard, Formin INF2 regulates MAL-mediated transport of Lck to the plasma membrane of human T lymphocytes, Molecular biology of the cell, vol.22, pp.5919-5929, 2010.

L. N. Ventimiglia and M. A. Alonso, Andres-Delgado L, et al. INF2 promotes the formation of detyrosinated microtubules necessary for centrosome reorientation in T cells, The Journal of cell biology, vol.454, pp.1025-1037, 2012.

K. Nika, Constitutively active Lck kinase in T cells drives antigen receptor signal transduction, Immunity, vol.32, pp.766-777, 2010.

A. Stirnweiss, T cell activation results in conformational changes in the Src family kinase Lck to induce its activation, Science signaling, vol.6, p.13, 2013.

W. Zhang, J. Sloan-lancaster, J. Kitchen, R. P. Trible, and L. E. Samelson, LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation, Cell, vol.92, pp.83-92, 1998.

W. Zhang, Essential role of LAT in T cell development, Immunity, vol.10, pp.323-332, 1999.

M. Mingueneau, Loss of the LAT adaptor converts antigen-responsive T cells into pathogenic effectors that function independently of the T cell receptor, Immunity, vol.31, pp.197-208, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00432068

B. Keller, Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT, The Journal of experimental medicine, vol.213, pp.1185-1199, 2016.

R. Roncagalli, Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptorindependent TCR signaling hub, Nature immunology, vol.15, pp.384-392, 2014.

L. E. Samelson, Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins, Annual review of immunology, vol.20, pp.371-394, 2002.

W. Zhang, R. P. Trible, and L. E. Samelson, LAT palmitoylation: its essential role in membrane microdomain targeting and tyrosine phosphorylation during T cell activation, Immunity, vol.9, pp.239-246, 1998.

M. Hundt, Y. Harada, D. Giorgio, L. Tanimura, N. Zhang et al., Palmitoylation-dependent plasma membrane transport but lipid raftindependent signaling by linker for activation of T cells, Journal of immunology, vol.183, pp.1685-1694, 2009.

N. Tanimura, S. Saitoh, S. Kawano, A. Kosugi, and K. Miyake, Palmitoylation of LAT contributes to its subcellular localization and stability, Biochemical and biophysical research communications, vol.341, pp.1177-1183, 2006.

T. Chum, D. Glatzova, Z. Kvicalova, J. Malinsky, T. Brdicka et al., The role of palmitoylation and transmembrane domain in sorting of transmembrane adaptor proteins, Journal of cell science, vol.129, pp.95-107, 2016.

G. Bonello, Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment, Journal of cell science, vol.117, pp.1009-1016, 2004.

M. Fukuda, Rab27 effectors, pleiotropic regulators in secretory pathways, Traffic, vol.14, pp.949-963, 2013.

E. S. Masuda, Rab37 is a novel mast cell specific GTPase localized to secretory granules, FEBS letters, vol.470, pp.61-64, 2000.

P. Larghi, VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites, Nat Immunol, vol.14, pp.723-731, 2013.

L. Balagopalan, Plasma membrane LAT activation precedes vesicular recruitment defining two phases of early T-cell activation, Nature communications, vol.9, 2013.

S. K. Rao, C. Huynh, V. Proux-gillardeaux, T. Galli, and N. W. Andrews, Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis, The Journal of biological chemistry, vol.279, pp.20471-20479, 2004.

N. Puri, M. J. Kruhlak, S. W. Whiteheart, and P. A. Roche, Mast cell degranulation requires N-ethylmaleimide-sensitive factor-mediated SNARE disassembly, Journal of immunology, vol.171, pp.5345-5352, 2003.

T. Galli, A novel tetanus neurotoxin-insensitive vesicle-associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells, Molecular biology of the cell, vol.9, pp.1437-1448, 1998.

M. Chaineau, L. Danglot, and T. Galli, Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking, FEBS letters, vol.583, pp.3817-3826, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00441621

M. S. Pols, hVps41 and VAMP7 function in direct TGN to late endosome transport of lysosomal membrane proteins, Nature communications, vol.4, p.1361, 2013.

A. Burgo, A Molecular Network for the Transport of the TI
URL : https://hal.archives-ouvertes.fr/hal-00764157

R. Fesce, F. Grohovaz, F. Valtorta, and J. Meldolesi, Neurotransmitter release: fusion or 'kiss-and-run'?, VAMP/VAMP7 Vesicles from Cell Center to Periphery. Developmental cell, vol.88, pp.1-4, 1994.

A. A. Alabi and R. W. Tsien, Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annual review of physiology, vol.75, pp.393-422, 2013.

L. Balagopalan, V. A. Barr, and L. E. Samelson, Endocytic events in TCR signaling: focus on adapters in microclusters, Immunological reviews, vol.232, pp.84-98, 2009.

L. Balagopalan, Enhanced T-cell signaling in cells bearing linker for activation of T-cell (LAT) molecules resistant to ubiquitylation, Proceedings of the National Academy of Sciences of the United States of America, vol.108, pp.2885-2890, 2011.

J. M. Carpier, Rab6-dependent retrograde traffic of LAT controls immune synapse formation and T cell activation, The Journal of experimental medicine, vol.215, pp.1245-1265, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02446749

J. S. Bonifacino and R. Rojas, Retrograde transport from endosomes to the trans-Golgi network, Nat Rev Mol Cell Biol, vol.7, pp.568-579, 2006.

L. Johannes and V. Popoff, Tracing the retrograde route in protein trafficking, Cell, vol.135, pp.1175-1187, 2008.

F. Mallard, C. Antony, D. Tenza, J. Salamero, B. Goud et al., Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport, The Journal of cell biology, vol.143, pp.973-990, 1998.

A. M. Shewan, GLUT4 recycles via a trans-Golgi network (TGN) subdomain enriched in Syntaxins 6 and 16 but not TGN38: involvement of an acidic targeting motif, Molecular biology of the cell, vol.14, pp.973-986, 2003.

T. Y. Belenkaya, Franch-Marro X, et al. Wingless secretion requires endosome-to-Golgi retrieval of Wntless/Evi/Sprinter by the retromer complex, Developmental cell, vol.14, pp.170-177, 2008.

P. T. Yang, M. J. Lorenowicz, M. Silhankova, D. Y. Coudreuse, M. C. Betist et al., Wnt signaling requires retromer-dependent recycling of MIG-14/Wntless in Wnt-producing cells, Developmental cell, vol.14, pp.140-147, 2008.

T. Wahle, K. Prager, N. Raffler, C. Haass, M. Famulok et al., GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network, Molecular and cellular neurosciences, vol.29, pp.453-461, 2005.

S. M. Pocha, T. Wassmer, C. Niehage, B. Hoflack, and E. Knust, Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs, Current biology : CB, vol.21, pp.1111-1117, 2011.

B. Zhou, Y. Wu, and X. Lin, Retromer regulates apical-basal polarity through recycling Crumbs, Dev Biol, vol.360, pp.87-95, 2011.

M. Shafaq-zadah, Persistent cell migration and adhesion rely on retrograde transport of beta(1) integrin, Nature cell biology, vol.18, pp.54-64, 2016.

O. Martinez, A. Schmidt, J. Salamero, B. Hoflack, M. Roa et al., The small GTP-binding protein rab6 functions in intra-Golgi transport, The Journal of cell biology, vol.127, pp.1575-1588, 1994.

F. Mallard, Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform, The Journal of cell biology, vol.156, pp.653-664, 2002.

R. W. Choy, Retromer mediates a discrete route of local membrane delivery to dendrites, Neuron, vol.82, pp.55-62, 2014.

O. I. Vivar, IFT20 controls LAT recruitment to the immune synapse and T-cell activation in vivo, Proc Natl Acad Sci U S A, vol.113, pp.386-391, 2016.

J. A. Follit, R. A. Tuft, K. E. Fogarty, and G. J. Pazour, The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly, Molecular biology of the cell, vol.17, pp.3781-3792, 2006.

J. A. Follit, The Golgin GMAP210/TRIP11 anchors IFT20 to the Golgi complex, PLoS genetics, vol.4, p.1000315, 2008.

F. Finetti, Intraflagellar transport is required for polarized recycling of the TCR/CD3 complex to the immune synapse, Nature cell biology, vol.11, pp.1332-1339, 2009.

P. Mayinger, Signaling at the Golgi. Cold Spring Harbor perspectives in biology, vol.3, 2011.

J. Downward, J. D. Graves, P. H. Warne, S. Rayter, and D. A. Cantrell, Stimulation of p21ras upon T-cell activation, Nature, vol.346, pp.719-723, 1990.

J. P. Roose, M. Mollenauer, V. A. Gupta, J. Stone, and A. Weiss, A diacylglycerolprotein kinase C-RasGRP1 pathway directs Ras activation upon antigen receptor stimulation of T cells, Molecular and cellular biology, vol.25, pp.4426-4441, 2005.

T. G. Bivona, Phospholipase Cgamma activates Ras on the Golgi apparatus by means of RasGRP1, Nature, vol.424, pp.694-698, 2003.

I. Perez-de-castro, T. G. Bivona, M. R. Philips, and A. Pellicer, Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus, Molecular and cellular biology, vol.24, pp.3485-3496, 2004.

C. Dong, R. J. Davis, and R. A. Flavell, MAP kinases in the immune response, Annual review of immunology, vol.20, pp.55-72, 2002.

S. Ibiza, Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.10507-10512, 2008.

M. A. Daniels, Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling, Nature, vol.444, pp.724-729, 2006.

Q. Zou, T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi, The Journal of experimental medicine, vol.212, pp.1323-1336, 2015.

I. Rubio, TCR-induced activation of Ras proceeds at the plasma membrane and requires palmitoylation of N-Ras, Journal of immunology, vol.185, pp.3536-3543, 2010.

J. Lin, A. Weiss, and T. S. Finco, Localization of LAT in glycolipid-enriched microdomains is required for T cell activation, The Journal of biological chemistry, vol.274, pp.28861-28864, 1999.

T. Harder and M. Kuhn, Selective accumulation of raft-associated membrane protein LAT in T cell receptor signaling assemblies, The Journal of cell biology, vol.151, pp.199-208, 2000.

V. Horejsi, P. Otahal, and T. Brdicka, LAT--an important raft-associated transmembrane adaptor protein, The FEBS journal, vol.277, pp.4383-4397, 2009.

I. Levental, D. Lingwood, M. Grzybek, U. Coskun, and K. Simons, Palmitoylation regulates raft affinity for the majority of integral raft proteins, Proceedings of the National Academy of Sciences of the United States of America, vol.107, pp.22050-22054, 2010.

M. Zhu, S. Shen, Y. Liu, O. Granillo, and W. Zhang, Cutting Edge: Localization of linker for activation of T cells to lipid rafts is not essential in T cell activation and development, Journal of immunology, vol.174, pp.31-35, 2005.

O. Rocks, The palmitoylation machinery is a spatially organizing system for peripheral membrane proteins, Cell, vol.141, pp.458-471, 2010.

Y. Ohno, A. Kihara, T. Sano, and Y. Igarashi, Intracellular localization and tissuespecific distribution of human and yeast DHHC cysteine-rich domain-containing proteins, Biochimica et biophysica acta, vol.1761, pp.474-483, 2006.

E. Kong, Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of protooncogene H-ras product and growth-associated protein-43, The Journal of biological chemistry, vol.288, pp.9112-9125, 2013.

M. Hundt, Impaired activation and localization of LAT in anergic T cells as a consequence of a selective palmitoylation defect, Immunity, vol.24, pp.513-522, 2006.

G. M. Barton and J. C. Kagan, A cell biological view of Toll-like receptor function: regulation through compartmentalization, Nature reviews Immunology, vol.9, pp.535-542, 2009.

A. V. Vieira, C. Lamaze, and S. L. Schmid, Control of EGF receptor signaling by clathrin-mediated endocytosis, Science, vol.274, pp.2086-2089, 1996.

R. Irannejad and M. Von-zastrow, GPCR signaling along the endocytic pathway. Current opinion in cell biology, vol.27, pp.109-116, 2014.

J. E. Murphy, B. E. Padilla, B. Hasdemir, G. S. Cottrell, and N. W. Bunnett, Endosomes: a legitimate platform for the signaling train, Proceedings of the National Academy of Sciences of the United States of America, vol.106, pp.17615-17622, 2009.

T. Willinger, M. Staron, S. M. Ferguson, D. Camilli, P. Flavell et al., Dynamin 2-dependent endocytosis sustains T-cell receptor signaling and drives metabolic reprogramming in T lymphocytes, Proceedings of the National Academy of Sciences of the United States of America, vol.112, pp.4423-4428, 2015.

P. Andre, A dominant-negative mutant of the Rab5 GTPase enhances T cell signaling by interfering with TCR down-modulation in transgenic mice, Journal of immunology, vol.159, pp.5253-5263, 1997.

S. Sigismund, E. Argenzio, D. Tosoni, E. Cavallaro, S. Polo et al., Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation, Developmental cell, vol.15, pp.209-219, 2008.

H. Yamamoto, H. Sakane, H. Yamamoto, T. Michiue, and A. Kikuchi, Wnt3a and Dkk1 regulate distinct internalization pathways of LRP6 to tune the activation of beta-catenin signaling, Developmental cell, vol.15, pp.37-48, 2008.

T. Harder and K. R. Engelhardt, Membrane domains in lymphocytes -from lipid rafts to protein scaffolds, Traffic, vol.5, pp.265-275, 2004.

D. A. Fruman and G. Bismuth, Fine tuning the immune response with PI3K, Immunological reviews, vol.228, pp.253-272, 2009.

G. Baldanzi, V. Bettio, V. Malacarne, and A. Graziani, Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity, Frontiers in cell and developmental biology, vol.4, p.140, 2016.

Y. Ma, K. Poole, J. Goyette, and K. Gaus, Introducing Membrane Charge and Membrane Potential to T Cell Signaling, Frontiers in immunology, vol.8, p.1513, 2017.

M. Spitaler, E. Emslie, C. D. Wood, and D. Cantrell, Diacylglycerol and protein kinase D localization during T lymphocyte activation, Immunity, vol.24, pp.535-546, 2006.

E. J. Quann, E. Merino, T. Furuta, and M. Huse, Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells, Nature immunology, vol.10, pp.627-635, 2009.

L. Floc, &. , and A. , Annular PIP3 accumulation controls actin architecture and modulates cytotoxicity at the immunological synapse, The Journal of experimental medicine, vol.210, pp.2721-2737, 2013.

C. M. Gawden-bone, G. L. Frazer, A. C. Richard, C. Y. Ma, K. Strege et al., PIP5 Kinases Regulate Membrane Phosphoinositide and Actin Composition for Targeted Granule Secretion by Cytotoxic Lymphocytes, Immunity, vol.49, pp.427-437, 2018.

K. Fischer, S. Voelkl, J. Berger, R. Andreesen, T. Pomorski et al., Antigen recognition induces phosphatidylserine exposure on the cell surface of human CD8+ T cells, Blood, vol.108, pp.4094-4101, 2006.

T. Zech, Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling, The EMBO journal, vol.28, pp.466-476, 2009.

M. Goppelt-strube and K. Resch, Polyunsaturated fatty acids are enriched in the plasma membranes of mitogen-stimulated T-lymphocytes, Biochimica et biophysica acta, vol.904, pp.22-28, 1987.

S. Manno, Y. Takakuwa, and N. Mohandas, Identification of a functional role for lipid asymmetry in biological membranes: Phosphatidylserine-skeletal protein interactions modulate membrane stability, Proceedings of the National Academy of Sciences of the United States of America, vol.99, pp.1943-1948, 2002.

E. Gagnon, D. A. Schubert, S. Gordo, H. H. Chu, and K. W. Wucherpfennig, Local changes in lipid environment of TCR microclusters regulate membrane binding by the CD3epsilon cytoplasmic domain, The Journal of experimental medicine, vol.209, pp.2423-2439, 2012.

N. Chouaki-benmansour, Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation, Scientific reports, vol.8, p.4966, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01920092

P. Xu, R. D. Baldridge, R. J. Chi, C. G. Burd, and T. R. Graham, Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport, The Journal of cell biology, vol.202, pp.875-886, 2013.

V. Zhendre, A. Grelard, M. Garnier-lhomme, S. Buchoux, B. Larijani et al., Key role of polyphosphoinositides in dynamics of fusogenic nuclear membrane vesicles, PloS one, vol.6, p.23859, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637421

J. Bigay and B. Antonny, Curvature, lipid packing, and electrostatics of membrane organelles: defining cellular territories in determining specificity, Developmental cell, vol.23, pp.886-895, 2012.

C. Klose, M. A. Surma, and K. Simons, Organellar lipidomics--background and perspectives. Current opinion in cell biology, vol.25, pp.406-413, 2013.

J. C. Holthuis and A. K. Menon, Lipid landscapes and pipelines in membrane homeostasis, Nature, vol.510, pp.48-57, 2014.

S. Takamori, Molecular anatomy of a trafficking organelle, Cell, vol.127, pp.831-846, 2006.

H. J. Sharpe, T. J. Stevens, and S. Munro, A comprehensive comparison of transmembrane domains reveals organelle-specific properties, Cell, vol.142, pp.158-169, 2010.

G. W. Ashdown, D. J. Williamson, G. Soh, N. Day, G. L. Burn et al., Membrane lipid order of sub-synaptic T cell vesicles correlates with their dynamics and function, Traffic, vol.19, pp.29-35, 2018.

E. Andrada, Diacylglycerol kinase zeta limits the polarized recruitment of diacylglycerol-enriched organelles to the immune synapse in T cells, Science signaling, vol.9, p.127, 2016.

P. S. Costello, M. Gallagher, and D. A. Cantrell, Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse, Nature immunology, vol.3, pp.1082-1089, 2002.

J. Harriague and G. Bismuth, Imaging antigen-induced PI3K activation in T cells, Nature immunology, vol.3, pp.1090-1096, 2002.

C. Hivroz, P. Larghi, M. Jouve, and L. Ardouin, Purification of LAT-Containing Membranes from Resting and Activated T Lymphocytes, Methods Mol Biol, vol.1584, pp.355-368, 2017.

M. Pinot, Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins, Science, vol.345, pp.693-697, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01141794

B. Antonny, S. Vanni, H. Shindou, and T. Ferreira, From zero to six double bonds: phospholipid unsaturation and organelle function, Trends in cell biology, vol.25, pp.427-436, 2015.

K. Gaus, T. Zech, and T. Harder, Visualizing membrane microdomains by Laurdan 2-photon microscopy, Molecular membrane biology, vol.23, pp.41-48, 2006.

K. Gaus, E. Chklovskaia, F. De-st-groth, B. Jessup, W. Harder et al., Condensation of the plasma membrane at the site of T lymphocyte activation, The Journal of cell biology, vol.171, pp.121-131, 2005.

Y. Ma, A. Benda, J. Kwiatek, D. M. Owen, and K. Gaus, Time-Resolved Laurdan Fluorescence Reveals Insights into Membrane Viscosity and Hydration Levels, Biophysical journal, vol.115, pp.1498-1508, 2018.

D. Rio-iniguez, I. Vazquez-chavez, E. Cuche, C. , D. Bartolo et al., HIV-1 Nef Hijacks Lck and Rac1 Endosomal Traffic To Dually Modulate Signaling-Mediated and Actin Cytoskeleton-Mediated T Cell Functions, Journal of immunology, vol.201, pp.2624-2640, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-01907920

C. L. Howe and W. C. Mobley, Long-distance retrograde neurotrophic signaling. Current opinion in neurobiology, vol.15, pp.40-48, 2005.

A. R. Watson and W. T. Lee, Differences in signaling molecule organization between naive and memory CD4+ T lymphocytes, Journal of immunology, vol.173, pp.33-41, 2004.

V. C. Fawcett and U. Lorenz, Localization of Src homology 2 domain-containing phosphatase 1 (SHP-1) to lipid rafts in T lymphocytes: functional implications and a role for the SHP-1 carboxyl terminus, Journal of immunology, vol.174, pp.2849-2859, 2005.

M. Sankarshanan, Z. Ma, T. Iype, and U. Lorenz, Identification of a novel lipid raft-targeting motif in Src homology 2-containing phosphatase 1, Journal of immunology, vol.179, pp.483-490, 2007.

M. Ebner, I. Lucic, T. A. Leonard, and I. Yudushkin, PI(3,4,5)P3 Engagement Restricts Akt Activity to Cellular Membranes, Molecular cell, vol.65, pp.416-431, 2017.

Y. Sancak, L. Bar-peled, R. Zoncu, A. L. Markhard, S. Nada et al., Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids, Cell, vol.141, pp.290-303, 2010.

I. Stefanova, J. R. Dorfman, and R. N. Germain, Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes, Nature, vol.420, pp.429-434, 2002.

D. Zehn, S. Y. Lee, and M. J. Bevan, Complete but curtailed T-cell response to very low-affinity antigen, Nature, vol.458, pp.211-214, 2009.

A. J. Ozga, pMHC affinity controls duration of CD8+ T cell-DC interactions and imprints timing of effector differentiation versus expansion, The Journal of experimental medicine, vol.213, pp.2811-2829, 2016.

C. W. Yang, Regulation of T Cell Receptor Signaling by DENND1B in TH2 Cells and Allergic Disease, Cell, vol.164, pp.141-155, 2016.

P. Beemiller and M. F. Krummel, Regulation of T-cell receptor signaling by the actin cytoskeleton and poroelastic cytoplasm, Immunological reviews, vol.256, pp.148-159, 2013.

M. L. Dustin and K. Choudhuri, Signaling and Polarized Communication Across the T Cell Immunological Synapse. Annual review of cell and developmental biology, vol.32, pp.303-325, 2016.

B. C. Chen, Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution, Science, vol.346, p.1257998, 2014.

A. T. Ritter, K. L. Angus, and G. M. Griffiths, The role of the cytoskeleton at the immunological synapse, Immunological reviews, vol.256, pp.107-117, 2013.

E. Cai, Visualizing dynamic microvillar search and stabilization during ligand detection by T cells, Science, vol.356, 2017.

A. Hashimoto-tane, T. Yokosuka, C. Ishihara, M. Sakuma, W. Kobayashi et al., T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering, Molecular and cellular biology, vol.30, pp.3421-3429, 2010.

M. Barda-saad, A. Braiman, R. Titerence, S. C. Bunnell, V. A. Barr et al., Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton, Nature immunology, vol.6, pp.80-89, 2005.

A. Braiman, M. Barda-saad, C. L. Sommers, and L. E. Samelson, Recruitment and activation of PLCgamma1 in T cells: a new insight into old domains, The EMBO journal, vol.25, pp.774-784, 2006.

C. Randriamampita, P. Mouchacca, B. Malissen, D. Marguet, A. Trautmann et al., A novel ZAP-70 dependent FRET based biosensor reveals kinase activity at both the immunological synapse and the antisynapse, PloS one, vol.3, p.1521, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294272

T. G. Bivona and M. R. Philips, Ras pathway signaling on endomembranes. Current opinion in cell biology, vol.15, pp.136-142, 2003.

C. D. Harvey, A genetically encoded fluorescent sensor of ERK activity, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.19264-19269, 2008.

N. Komatsu, Development of an optimized backbone of FRET biosensors for kinases and GTPases, Molecular biology of the cell, vol.22, pp.4647-4656, 2011.

G. Voisinne, Co-recruitment analysis of the CBL and CBLB signalosomes in primary T cells identifies CD5 as a key regulator of TCR-induced ubiquitylation. Molecular systems biology, vol.12, p.876, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01368500

E. Caron, Precise Temporal Profiling of Signaling Complexes in Primary Cells Using SWATH Mass Spectrometry, Cell reports, vol.18, pp.3219-3226, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01996176

B. Malissen, C. Gregoire, M. Malissen, and R. Roncagalli, Integrative biology of T cell activation, Nature immunology, vol.15, pp.790-797, 2014.