N. Ahmed, R. Mandel, and M. J. Fain, Frailty: an emerging geriatric syndrome, The American Journal of Medicine, vol.120, issue.9, pp.748-753, 2007.

J. Moslehi, R. A. Depinho, and E. Sahin, Telomeres and mitochondria in the aging heart, Circulation Research, vol.110, issue.9, pp.1226-1237, 2012.

D. Cesselli, A. P. Beltrami, and F. , Effects of age and heart failure on human cardiac stem cell function, The American Journal of Pathology, vol.179, issue.1, pp.349-366, 2011.

A. Sheydina, D. R. Riordon, and K. R. Boheler, Molecular mechanisms of cardiomyocyte aging, Clinical Science, vol.121, issue.8, pp.315-329, 2011.

C. Chimenti, J. Kajstura, and D. Torella, Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure, Circulation Research, vol.93, issue.7, pp.604-613, 2003.

J. Kajstura, B. Pertoldi, and A. Leri, Telomere shortening is an in vivo marker of myocyte replication and aging, The American Journal of Pathology, vol.156, issue.3, pp.813-819, 2000.

D. J. Baker, B. G. Childs, and M. Durik, Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan, Nature, vol.530, issue.7589, pp.184-189, 2016.

E. Sahin, S. Colla, and M. Liesa, Telomere dysfunction induces metabolic and mitochondrial compromise, Nature, vol.470, issue.7334, pp.359-365, 2011.

A. Trifunovic, A. Wredenberg, and M. Falkenberg, Premature ageing in mice expressing defective mitochondrial DNA polymerase, Nature, vol.429, issue.6990, pp.417-423, 2004.

P. J. Linton, M. Gurney, D. Sengstock, R. M. Mentzer, and R. A. Gottlieb, This old heart: cardiac aging and autophagy, Journal of Molecular and Cellular Cardiology, vol.83, pp.44-54, 2014.

M. Taneike, O. Yamaguchi, and A. Nakai, Inhibition of autophagy in the heart induces age-related cardiomyopathy, Autophagy, vol.6, issue.5, pp.600-606, 2010.

H. Kanamori, G. Takemura, and K. Goto, Resveratrol reverses remodeling in hearts with large, old myocardial infarctions through enhanced autophagy-activating AMP kinase pathway, The American Journal of Pathology, vol.182, issue.3, pp.701-713, 2013.

A. Hoshino, Y. Mita, and Y. Okawa, Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart, Nature Communications, vol.4, p.2308, 2013.

M. Serrano and M. A. Blasco, Putting the stress on senescence, Current Opinion in Cell Biology, vol.13, issue.6, pp.748-753, 2001.

P. Davalli, T. Mitic, A. Caporali, A. Lauriola, and D. D'arca, ROS, cell senescence, and novel molecular mechanisms in aging and age-related diseases, Oxidative Medicine and Cellular Longevity, vol.2016, p.18, 2016.

S. F. Steinberg, Oxidative stress and sarcomeric proteins, Circulation Research, vol.112, issue.2, pp.393-405, 2013.

Q. Li, D. Su, B. O'rourke, S. M. Pogwizd, and L. Zhou, Mitochondria-derived ROS bursts disturb calcium cycling and induce abnormal automaticity in guinea pig cardiomyocyte: a theoretical study, American Journal of Physiology

, Oxidative Medicine and Cellular Longevity Heart and Circulatory Physiology, vol.308, issue.6, pp.623-636, 2014.

S. Kurokawa, S. Niwano, and H. Niwano, Cardiomyocytederived mitochondrial superoxide causes myocardial electrical remodeling by downregulating potassium channels and related molecules, Circulation Journal, vol.78, issue.8, pp.1950-1959, 2014.

A. Terman, T. Kurz, M. Navratil, E. A. Arriaga, and U. T. Brunk, Mitochondrial turnover and aging of long-lived postmitotic cells: the mitochondrial-lysosomal axis theory of aging, Antioxidants & Redox Signaling, vol.12, issue.4, pp.503-535, 2010.

P. H. Sugden and A. Clerk, Oxidative stress and growthregulating intracellular signaling pathways in cardiac myocytes, Antioxidants & Redox Signaling, vol.8, issue.11-12, pp.2111-2124, 2006.

A. Nabeebaccus, M. Zhang, and A. M. Shah, NADPH oxidases and cardiac remodelling, Heart Failure Reviews, vol.16, issue.1, pp.5-12, 2011.

P. J. Lijnen, J. F. Van-pelt, and R. H. Fagard, Stimulation of reactive oxygen species and collagen synthesis by angiotensin II in cardiac fibroblasts, Cardiovascular Therapeutics, vol.30, issue.1, pp.1-8, 2012.

X. Y. Wu, A. Y. Luo, Y. R. Zhou, and J. H. Ren, N-acetylcysteine reduces oxidative stress, nuclear factorkappaB activity and cardiomyocyte apoptosis in heart failure, Molecular Medicine Reports, vol.10, issue.2, pp.615-624, 2014.

M. Schwarzer, M. Osterholt, A. Lunkenbein, A. Schrepper, P. Amorim et al., Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure, The Journal of Physiology, vol.592, issue.17, pp.3767-3782, 2014.

S. Rautiainen, E. B. Levitan, M. A. Mittleman, and A. Wolk, Total antioxidant capacity of diet and risk of heart failure: a population-based prospective cohort of women, The American Journal of Medicine, vol.126, issue.6, pp.494-500, 2013.

Z. Tatarkova, S. Kuka, and P. Racay, Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart, Physiological Research, vol.60, issue.2, pp.281-289, 2011.

D. V. Ziegler, C. D. Wiley, and M. C. Velarde, Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging, Aging Cell, vol.14, issue.1, pp.1-7, 2015.

D. F. Dai, L. F. Santana, and M. Vermulst, Overexpression of catalase targeted to mitochondria attenuates murine cardiac aging, Circulation, vol.119, issue.21, pp.2789-2797, 2009.

D. E. Edmondson, C. Binda, J. Wang, A. K. Upadhyay, and A. Mattevi, Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases, Biochemistry, vol.48, issue.20, pp.4220-4230, 2009.

N. Kaludercic, J. Mialet-perez, N. Paolocci, A. Parini, and F. Lisa, Monoamine oxidases as sources of oxidants in the heart, Journal of Molecular and Cellular Cardiology, vol.73, pp.34-42, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01053608

S. D. Sivasubramaniam, C. C. Finch, M. J. Rodriguez, N. Mahy, and E. E. Billett, A comparative study of the expression of monoamine oxidase-A and -B mRNA and protein in non-CNS human tissues, Cell and Tissue Research, vol.313, issue.3, pp.291-300, 2003.

M. B. Youdim, D. Edmondson, and K. F. Tipton, The therapeutic potential of monoamine oxidase inhibitors, Nature Reviews. Neuroscience, vol.7, issue.4, pp.295-309, 2006.

C. Rouzaud-laborde, N. Hanoun, and I. Baysal, Role of endothelial AADC in cardiac synthesis of serotonin and nitrates accumulation, PloS One, vol.7, issue.7, p.34893, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00756470

J. S. Floras, Sympathetic nervous system activation in human heart failure: clinical implications of an updated model, Journal of the American College of Cardiology, vol.54, issue.5, pp.375-385, 2009.

M. D. Esler, A. G. Turner, and D. M. Kaye, Aging effects on human sympathetic neuronal function, The American Journal of Physiology, vol.268, issue.1, pp.278-285, 1995.

C. Rouzaud-laborde, C. Delmas, and N. Pizzinat, Platelet activation and arterial peripheral serotonin turnover in cardiac remodeling associated to aortic stenosis, American Journal of Hematology, vol.90, issue.1, pp.15-19, 2015.

R. R. Nigmatullina, V. V. Kirillova, and R. K. Jourjikiya, Disrupted serotonergic and sympathoadrenal systems in patients with chronic heart failure may serve as new therapeutic targets and novel biomarkers to assess severity, progression and response to treatment, Cardiology, vol.113, issue.4, pp.277-286, 2009.

A. M. Selim, N. Sarswat, I. Kelesidis, M. Iqbal, R. Chandra et al., Plasma serotonin in heart failure: possible marker and potential treatment target, Heart, Lung & Circulation, vol.26, issue.5, pp.442-449, 2016.

M. W. Rich, Heart failure in the 21st century: a cardiogeriatric syndrome, The Journals of Gerontology. Series a, Biological Sciences and Medical Sciences, vol.56, issue.2, pp.88-96, 2001.

J. Mialet-perez, R. Angelo, and C. Villeneuve, Serotonin 5-HT2A receptor-mediated hypertrophy is negatively regulated by caveolin-3 in cardiomyoblasts and neonatal cardiomyocytes, Journal of Molecular and Cellular Cardiology, vol.52, issue.2, pp.502-510, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02352444

Y. C. Fu, C. S. Chi, S. C. Yin, B. Hwang, Y. T. Chiu et al., Norepinephrine induces apoptosis in neonatal rat cardiomyocytes through a reactive oxygen species-TNF alpha-caspase signaling pathway, Cardiovascular Research, vol.62, issue.3, pp.558-567, 2004.

C. Villeneuve, C. Guilbeau-frugier, and P. Sicard, p53-PGC-1alpha pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice, Antioxidants & Redox Signaling, vol.18, issue.1, pp.5-18, 2013.

G. W. De-keulenaer and D. L. Brutsaert, Systolic and diastolic heart failure are overlapping phenotypes within the heart failure spectrum, Circulation, vol.123, issue.18, 1996.

F. S. Loffredo, A. P. Nikolova, J. R. Pancoast, and R. T. Lee, Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium, Circulation Research, vol.115, issue.1, pp.97-107, 2014.

A. Maurel, C. Hernandez, and O. Kunduzova, Agedependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats, American Journal of Physiology. Heart and Circulatory Physiology, vol.284, issue.4, pp.1460-1467, 2003.

, Oxidative Medicine and Cellular Longevity

R. Pino, P. Failli, L. Mazzetti, and F. Buffoni, Monoamine oxidase and semicarbazide-sensitive amine oxidase activities in isolated cardiomyocytes of spontaneously hypertensive rats, Biochemical and Molecular Medicine, vol.62, issue.2, pp.188-196, 1997.

O. M. Duicu, R. Lighezan, and A. Sturza, Assessment of mitochondrial dysfunction and monoamine oxidase contribution to oxidative stress in human diabetic hearts, Oxidative Medicine and Cellular Longevity, vol.2016, p.12, 2016.

N. Kaludercic, E. Takimoto, and T. Nagayama, Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload, Circulation Research, vol.106, issue.1, pp.193-202, 2010.

P. Umbarkar, S. Singh, S. Arkat, S. L. Bodhankar, S. Lohidasan et al., Monoamine oxidase-A is an important source of oxidative stress and promotes cardiac dysfunction, apoptosis, and fibrosis in diabetic cardiomyopathy, Free Radical Biology & Medicine, vol.87, pp.263-273, 2015.

J. K. Mallajosyula, D. Kaur, and S. J. Chinta, MAO-B elevation in mouse brain astrocytes results in Parkinson's pathology, PloS One, vol.3, issue.2, p.1616, 2008.

E. J. Anderson, J. T. Efird, and S. W. Davies, Monoamine oxidase is a major determinant of redox balance in human atrial myocardium and is associated with postoperative atrial fibrillation, Journal of the American Heart Association, vol.3, issue.1, p.713, 2014.

E. Marzetti, A. Csiszar, D. Dutta, G. Balagopal, R. Calvani et al., Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics, American Journal of Physiology. Heart and Circulatory Physiology, vol.305, issue.4, pp.459-476, 2013.

A. M. Orogo and A. B. Gustafsson, Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease, Circulation Research, vol.116, issue.3, pp.489-503, 2015.

Y. Santin, P. Sicard, and F. Vigneron, Oxidative stress by monoamine oxidase-A impairs transcription factor EB activation and autophagosome clearance, leading to cardiomyocyte necrosis and heart failure, Antioxidants & Redox Signaling, vol.25, issue.1, pp.10-27, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02446137

N. Kaludercic, A. Carpi, and T. Nagayama, Monoamine oxidase B prompts mitochondrial and cardiac dysfunction in pressure overloaded hearts, Antioxidants & Redox Signaling, vol.20, issue.2, pp.267-280, 2014.

B. Wu, L. Yu, and Y. Wang, Aldehyde dehydrogenase 2 activation in aged heart improves the autophagy by reducing the carbonyl modification on SIRT1, Oncotarget, vol.7, issue.3, pp.2175-2188, 2016.

, Oxidative Medicine and Cellular Longevity