G. Barja and A. Herrero, Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals, Faseb J, vol.14, issue.2, pp.312-318, 2000.

P. Bianchi, O. Kunduzova, E. Masini, C. Cambon, D. Bani et al., Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury, Circulation, vol.112, issue.21, pp.3297-3305, 2005.

J. Campisi and F. Di-fagagna, Cellular senescence: when bad things happen to good cells, Nat Rev Mol Cell Biol, vol.8, issue.9, pp.729-740, 2007.

B. G. Childs, M. Durik, D. J. Baker, and J. M. Van-deursen, Cellular senescence in aging and agerelated disease: from mechanisms to therapy, Nature Medicine, vol.21, issue.12, pp.1424-1435, 2015.

A. R. Collins, A. A. Oscoz, G. Brunborg, I. Gaivao, L. Giovannelli et al., The comet assay: topical issues, Mutagenesis, vol.23, issue.3, pp.143-151, 2008.

C. Correia-melo, F. D. Marques, R. Anderson, G. Hewitt, R. Hewitt et al.,

J. F. Passos, Mitochondria are required for pro-ageing features of the senescent phenotype, EMBO J, vol.35, issue.7, pp.724-742, 2016.

J. Duan, J. Duan, Z. Zhang, and T. Tong, Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes and telomere shortening, Int J Biochem Cell Biol, vol.37, issue.7, pp.1407-1420, 2005.

S. B. Edelstein and X. O. Breakefield, Monoamine oxidases A and B are differentially regulated by glucocorticoids and "aging" in human skin fibroblasts, Cell Mol Neurobiol, vol.6, issue.2, pp.121-150, 1986.

L. Fazal, M. Laudette, S. Paula-gomes, S. Pons, C. Conte et al., Multifunctional Mitochondrial Epac1 Controls Myocardial Cell Death, Circ Res, vol.120, issue.4, pp.645-657, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01831264

M. Giorgio, M. Trinei, E. Migliaccio, and P. G. Pelicci, Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals?, Nat Rev Mol Cell Biol, vol.8, issue.9, pp.722-728, 2007.

D. R. Green and G. Kroemer, Cytoplasmic functions of the tumour suppressor p53, Nature, vol.458, issue.7242, 2009.

A. Hoshino, M. Ariyoshi, Y. Okawa, S. Kaimoto, M. Uchihashi et al.,

S. Matoba, Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic beta-cell function in diabetes, Proc Natl Acad Sci U S A, vol.111, issue.8, pp.3116-3121, 2014.

A. Hoshino, Y. Mita, Y. Okawa, M. Ariyoshi, E. Iwai-kanai et al., Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart, Nat Commun, vol.4, p.2308, 2013.

N. Kaludercic, J. Mialet-perez, N. Paolocci, A. Parini, and F. Di-lisa, Monoamine oxidases as sources of oxidants in the heart, J Mol Cell Cardiol, vol.73, pp.34-42, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01053608

N. Kaludercic, E. Takimoto, T. Nagayama, N. Feng, E. W. Lai et al.,

N. Paolocci, Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload, Circ Res, vol.106, issue.1, pp.193-202, 2010.

V. I. Korolchuk, S. Miwa, B. Carroll, and T. Zglinicki, Mitochondria in cell senescence: Is mitophagy the weakest link? EBioMedicine, 2017.

K. P. Lai, W. F. Leong, J. F. Chau, D. Jia, L. Zeng et al.,

B. Li, S6K1 is a multifaceted regulator of Mdm2 that connects nutrient status and DNA damage response, EMBO J, vol.29, issue.17, pp.2994-3006, 2010.

C. Lopez-otin, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, The hallmarks of aging, Cell, vol.153, issue.6, pp.1194-1217, 2013.

M. E. Manni, S. Rigacci, E. Borchi, V. Bargelli, C. Miceli et al., , 2016.

, Monoamine Oxidase Is Overactivated in Left and Right Ventricles from Ischemic Hearts: An Intriguing Therapeutic Target, Oxid Med Cell Longev, p.4375418, 2016.

A. Maurel, C. Hernandez, O. Kunduzova, G. Bompart, C. Cambon et al., Agedependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats, Am J Physiol Heart Circ Physiol, vol.284, issue.4, pp.1460-1467, 2003.

M. Morita, S. P. Gravel, V. Chenard, K. Sikstrom, L. Zheng et al., mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent translational regulation, Cell Metab, vol.18, issue.5, pp.698-711, 2013.

T. Nacarelli, A. Azar, and C. Sell, Aberrant mTOR activation in senescence and aging: A mitochondrial stress response?, Exp Gerontol, vol.68, pp.66-70, 2015.

M. Ohno, S. Oka, and Y. Nakabeppu, Quantitative analysis of oxidized guanine, 8-oxoguanine, in mitochondrial DNA by immunofluorescence method, Methods Mol Biol, vol.554, pp.199-212, 2009.

Y. Santin, P. Sicard, F. Vigneron, C. Guilbeau-frugier, M. Dutaur et al., , 2016.

, Oxidative Stress by Monoamine Oxidase-A Impairs Transcription Factor EB Activation and Autophagosome Clearance, Leading to Cardiomyocyte Necrosis and Heart Failure, Antioxid Redox Signal, vol.25, issue.1, pp.10-27

G. Santulli and G. Iaccarino, Adrenergic signaling in heart failure and cardiovascular aging, Maturitas, vol.93, pp.65-72, 2016.

D. D. Sarbassov and D. M. Sabatini, Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex, J Biol Chem, vol.280, issue.47, pp.39505-39509, 2005.

M. Serrano and M. A. Blasco, Putting the stress on senescence, Curr Opin Cell Biol, vol.13, issue.6, pp.748-753, 2001.

E. Trouche, C. Mias, M. H. Seguelas, C. Ordener, D. Cussac et al., Characterization of monoamine oxidases in mesenchymal stem cells: role in hydrogen peroxide generation and serotonin-dependent apoptosis, Stem Cells Dev, vol.19, issue.10, pp.1571-1578, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00615287

G. Twig, B. Hyde, and O. S. Shirihai, Mitochondrial fusion, fission and autophagy as a quality control axis: the bioenergetic view, Biochim Biophys Acta, vol.1777, issue.9, pp.1092-1097, 2008.

C. Villeneuve, C. Guilbeau-frugier, P. Sicard, O. Lairez, C. Ordener et al.,

J. Mialet-perez, p53-PGC-1alpha pathway mediates oxidative mitochondrial damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: role in chronic left ventricular dysfunction in mice, Antioxid Redox Signal, vol.18, issue.1, pp.5-18, 2013.

E. S. Vincow, G. Merrihew, R. E. Thomas, N. J. Shulman, R. P. Beyer et al., The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo, Proc Natl Acad Sci, vol.110, issue.16, pp.6400-6405, 2013.

S. J. Watkins, G. M. Borthwick, and H. M. Arthur, The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro, In Vitro Cell Dev Biol Anim, vol.47, issue.2, pp.125-131, 2011.

J. B. Wu, C. Shao, X. Li, Q. Li, P. Hu et al.,

L. W. Chung, Monoamine oxidase A mediates prostate tumorigenesis and cancer metastasis, J Clin Invest, vol.124, issue.7, pp.2891-2908, 2014.

J. B. Wu, L. Yin, C. Shi, Q. Li, P. Duan et al., MAOA-Dependent Activation of Shh-IL6-RANKL Signaling Network Promotes Prostate Cancer Metastasis by Engaging Tumor-Stromal Cell Interactions, Cancer Cell, vol.31, issue.3, pp.368-382, 2017.

Y. Zhu, T. Tchkonia, T. Pirtskhalava, A. C. Gower, H. Ding et al., The Achilles' heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, vol.14, issue.4, pp.644-658, 2015.