J. C. Acosta, A. Banito, T. Wuestefeld, A. Georgilis, P. Janich et al., A complex secretory program orchestrated by the inflammasome controls paracrine senescence, Nat Cell Biol, vol.15, pp.978-90, 2013.

R. Anderson, G. D. Richardson, and J. F. Passos, Mechanisms driving the ageing heart, Experimental Gerontology, vol.109, pp.5-15, 2018.

N. S. Bae and P. Baumann, A RAP1/TRF2 Complex Inhibits Nonhomologous End-Joining at Human Telomeric DNA Ends, Molecular Cell, vol.26, pp.323-334, 2007.

D. J. Baker, B. G. Childs, M. Durik, M. E. Wijers, C. J. Sieben et al., Naturally occurring p16Ink4a-positive cells shorten healthy lifespan, Nature, vol.530, pp.184-189, 2016.

D. J. Baker, T. Wijshake, T. Tchkonia, N. K. Lebrasseur, B. G. Childs et al., Clearance of p16Ink4a-positive senescent cells delays ageingassociated disorders, Nature, vol.479, pp.232-236, 2011.

O. Bergmann, S. Zdunek, A. Felker, M. Salehpour, K. Alkass et al., Dynamics of Cell Generation and Turnover in the Human Heart. Cell, vol.161, pp.1566-75, 2015.

A. G. Bodnar, M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu et al., Extension of life-span by introduction of telomerase into normal human cells, Science, vol.279, pp.349-52, 1998.

A. Chang, S. Ong, E. L. Lagory, P. E. Kraft, A. J. Giaccia et al., Telomere shortening and metabolic compromise underlie dystrophic cardiomyopathy, Proceedings of the National Academy of Sciences of the United States of America, vol.113, pp.13120-13125, 2016.

V. Chelliah, N. Juty, I. Ajmera, R. Ali, M. Dumousseau et al., BioModels: ten-year anniversary, Nucleic Acids Res, vol.43, pp.542-550, 2015.

J. P. Coppé, C. K. Patil, F. Rodier, Y. Sun, D. P. Muñoz et al., Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor, PLoS Biology, vol.6, p.301, 2008.

C. Correia-melo, F. Marques, R. Anderson, G. Hewitt, R. Hewitt et al., Mitochondria are required for pro-ageing features of the senescent phenotype, The EMBO Journal, vol.35, pp.724-742, 2016.

F. Di-fagagna, P. M. Reaper, L. Clay-farrace, H. Fiegler, P. Carr et al., A DNA damage checkpoint response in telomereinitiated senescence, Nature, vol.426, pp.194-198, 2003.

D. Dai, C. T. Johnson, S. C. Szeto, H. Rabinovitch, and P. S. , Cardiac Aging: From Molecular Mechanisms to Significance in Human Health and Disease, Antioxidants & Redox Signaling, vol.16, pp.1492-1526, 2012.

M. M. Davidson, C. Nesti, L. Palenzuela, W. Walker, E. Hernandez et al., Novel cell lines derived from adult human ventricular cardiomyocytes, J Mol Cell Cardiol, vol.39, pp.133-180, 2005.

T. De-lange, Shelterin: the protein complex that shapes and safeguards human telomeres, Genes Dev, vol.19, pp.2100-2110, 2005.

R. L. Dilley, P. Verma, N. W. Cho, H. D. Winters, A. R. Wondisford et al., Breakinduced telomere synthesis underlies alternative telomere maintenance, Nature, vol.539, pp.54-58, 2016.

G. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.9363-9367, 1995.

J. N. Farr, M. Xu, M. M. Weivoda, D. G. Monroe, D. G. Fraser et al., Targeting cellular senescence prevents age-related bone loss in mice, Nat Med, vol.23, pp.1072-1079, 2017.

M. Fumagalli, F. Rossiello, M. Clerici, S. Barozzi, D. Cittaro et al., Adda di Fagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation, Nat Cell Biol, vol.14, pp.355-365

J. D. Griffith, L. Comeau, S. Rosenfield, R. M. Stansel, A. Bianchi et al., Mammalian Telomeres End in a Large Duplex Loop, Cell, vol.97, pp.503-514, 1999.

G. Hewitt, D. Jurk, F. Marques, C. Correia-melo, T. Hardy et al., Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence, Nat Commun, vol.3, p.708, 2012.

S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle et al., COmplex PAthway SImulator. Bioinformatics, vol.22, pp.3067-74, 2006.

M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, pp.524-531, 2003.

D. Jurk, C. Wang, S. Miwa, M. Maddick, V. Korolchuk et al., Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response, Aging Cell, vol.11, pp.996-1004, 2012.

P. Mao, J. Liu, Z. Zhang, H. Zhang, H. Liu et al., Homologous recombination-dependent repair of telomeric DSBs in proliferating human cells, Nat Commun, vol.7, p.12154, 2016.

T. Minamino, M. Orimo, I. Shimizu, T. Kunieda, M. Yokoyama et al., A crucial role for adipose tissue p53 in the regulation of insulin resistance, Nat Med, vol.15, pp.1082-1087, 2009.

M. Mollova, K. Bersell, S. Walsh, J. Savla, L. T. Das et al., Cardiomyocyte proliferation contributes to heart growth in young humans, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.1446-1451, 2013.

F. Mourkioti, J. Kustan, P. Kraft, J. W. Day, M. Zhao et al., Role of Telomere Dysfunction in Cardiac Failure in Duchenne Muscular Dystrophy, Nature cell biology, vol.15, pp.895-904, 2013.

A. C. Nag and R. Zak, Dissociation of adult mammalian heart into single cell suspension: an ultrastructural study, Journal of Anatomy, vol.129, pp.541-559, 1979.

S. Ock, W. S. Lee, J. Ahn, H. M. Kim, H. Kang et al., Deletion of IGF-1 Receptors in Cardiomyocytes Attenuates Cardiac Aging in Male Mice, Endocrinology, vol.157, pp.336-345, 2016.

M. Ogrodnik, S. Miwa, T. Tchkonia, D. Tiniakos, C. L. Wilson et al., Cellular senescence drives age-dependent hepatic steatosis, Nature Communications, p.15691, 2017.

J. Passos, G. Saretzki, S. Ahmed, G. Nelson, T. Richter et al., Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence, PLoS biology, vol.5, 2007.

J. F. Passos, G. Nelson, C. Wang, T. Richter, C. Simillion et al., Feedback between p21 and reactive oxygen production is necessary for cell senescence, Mol Syst Biol, vol.6, p.347, 2010.

J. F. Passos, G. Saretzki, S. Ahmed, G. Nelson, T. Richter et al., Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity In Telomere-Dependent Senescence, PLoS Biology, vol.5, p.110, 2007.

R. E. Redgrave, S. Tual-chalot, B. J. Davison, E. Singh, D. Hall et al., Cardiosphere-Derived Cells Require Endoglin for Paracrine-Mediated Angiogenesis. Stem Cell Reports, vol.8, pp.1287-1298, 2017.

G. D. Richardson, Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover, J Vis Exp Richardson GD, vol.24, pp.1672-1681, 2015.

M. Rota, T. Hosoda, D. Angelis, A. Arcarese, M. L. Esposito et al., The Young Mouse Heart Is Composed of Myocytes Heterogeneous in Age and Function, Circulation Research, vol.101, p.387, 2007.

E. Sahin, S. Colla, M. Liesa, J. Moslehi, F. L. Muller et al., Telomere dysfunction induces metabolic and mitochondrial compromise, Nature, vol.470, pp.359-365, 2011.

P. Sapieha, F. A. Mallette, M. L. Steinhauser, C. L. Pizzimenti, V. K. Yang et al., Mammalian heart renewal by pre-existing cardiomyocytes, Cellular Senescence in Postmitotic Cells: Beyond Growth Arrest. Trends in Cell Biology Senyo SE, vol.493, pp.433-439, 2013.

L. T. Shenje, P. Andersen, M. K. Halushka, C. Lui, L. Fernandez et al., Mutations in Alström Protein Impair Terminal Differentiation of Cardiomyocytes, Nature communications, vol.5, pp.3416-3416, 2014.

J. B. Strait and E. G. Lakatta, Aging-associated cardiovascular changes and their relationship to heart failure, Heart Fail Clin, vol.8, pp.143-64, 2012.

E. C. Swanson, B. Manning, H. Zhang, and J. B. Lawrence, Higher-order unfolding of satellite heterochromatin is a consistent and early event in cell senescence, The Journal of Cell Biology, vol.203, pp.929-942, 2013.

A. Trifunovic, A. Wredenberg, M. Falkenberg, J. N. Spelbrink, A. T. Rovio et al., Premature ageing in mice expressing defective mitochondrial DNA polymerase, van Deursen JM, vol.429, pp.439-485, 2004.

C. Villeneuve, C. Guilbeau-frugier, P. Sicard, O. Lairez, C. Ordener et al., -PGC-1? Pathway Mediates Oxidative Mitochondrial Damage and Cardiomyocyte Necrosis Induced by Monoamine Oxidase-A Upregulation: Role in Chronic Left Ventricular Dysfunction in Mice, Antioxidants & Redox Signaling, vol.18, pp.5-18, 2013.

C. D. Waring, C. Vicinanza, A. Papalamprou, A. J. Smith, S. Purushothaman et al., The adult heart responds to increased workload with physiologic hypertrophy, cardiac stem cell activation, and new myocyte formation, European Heart Journal, vol.35, pp.2722-2731, 2014.

H. Wickham, . Springer, D. J. Wilkinson, L. Wong, H. Oeseburg et al., Telomere biology in cardiovascular disease: the TERC?/? mouse as a model for heart failure and ageing, Cardiovascular Research, vol.81, pp.244-252, 2008.

Y. Zhu, T. Tchkonia, H. Fuhrmann-stroissnigg, H. M. Dai, Y. Y. Ling et al., from single z-planes where co-localisation was found).b) % of ?H2A.X foci co-localising with telomeres and c) Mean number of Telomere-associated Foci (TAF) in FLAG-tagged TRF1-FokI-D450A-and TRF1-FokI-expressing CMs. Data are mean ± SEM of n=4 independent experiments. >50 cells were analysed per condition. Statistical analysis was performed by two-tailed t-test * P<0.05. d) Histograms displaying telomere intensity for telomeres colocalising or not co-localising with ?H2AX foci, Aging Cell, vol.15, pp.428-435, 2016.

, Data are mean ± SEM of n=3 independent experiments. >100 cells were quantified per condition. f) Expression of p21 mRNA (as a function of ?-actin and Gapdh) by Real-time PCR in TRF1-FokI-D450A and TRF1-FokI expressing CMs. Data are mean ± SEM of n=6 independent experiments; g) Mean cell surface area (?m 2 ) of FLAG-labelled CMs expressingTRF1-FokI-D450A and TRF1-FokI, Mean % of FLAG-labelled CMs positive for SA-?-Gal activity

*. P&lt;0,

. **p&lt;0,

, Figure 4 Aged cardiomyocytes activate senescent pathways but not a typical SASP. a) Schematic illustrating CM isolation procedure. b) Real-time PCR gene expression analysis in performed by One-Way ANOVA

*. P&lt;0, 05. c) Mean % of p21-positive CM nuclei from 3, 15, and 30 month old C57BL/6 mice by

. Immunohistochemistry, Data are mean ± SEM of n=4 per age group. >100 CMs were quantified per age group. Statistical analysis performed using One-Way ANOVA

*. P&lt;0, 05. d) Mean % of 3 and 24 month old mouse CMs staining positive for SA-?-Gal in vivo with representative images above (blue -SA-?-Gal

. Red--wga), Statistical analysis performed using two-tailed t-test * P<0.05. Data obtained 8 quantified

. Sasp-heatmap, Asterisks denote a statistical significance at P < 0.05 using twotailed t-test. e) Mean number of TAF (left graph) and mean % of TAF-positive nuclei (right graph) in CMs. Data are mean ± S.E.M. of n=6 per age group. 100 CMs were analysed per mouse. f) Histograms showing distribution of individual telomere intensities measured by Q-FISH in INK-ATTAC mice (28-29m old) treated with vehicle or AP20187. >150 CMs were analysed per mouse. g) Mean CM area ?m 2 . Data are mean ±S.E.M. of n=6 per age group, >150 CMs analysed per mouse. h) % of fibrotic area evaluated by Sirius Red staining, Pearson correlation clustered heatmap showing a curated list of known SASP genes (top panel) or a selection of secreted SASP proteins (bottom panel) in young (3 months) and old (20 months) mouse CMs (n=5 per age group

. **p&lt;0, , p.1

*. P&lt;0, , p.5