P. Rama, S. Matuska, G. Paganoni, A. Spinelli, D. Luca et al., Limbal stem-cell therapy and long-term corneal regeneration, N Engl J Med, vol.363, pp.147-155, 2010.

K. Tsubota, Y. Satake, M. Kaido, N. Shinozaki, S. Shimmura et al., Treatment of severe ocular-surface disorders with corneal epithelial stem-cell transplantation, N Engl J Med, vol.340, pp.1697-1703, 1999.

S. D. Schwartz, J. P. Hubschman, G. Heilwell, V. Franco-cardenas, C. K. Pan et al., Embryonic stem cell trials for macular degeneration: a preliminary report, Lancet, vol.379, pp.713-720, 2012.

K. Ohnishi, K. Semi, T. Yamamoto, M. Shimizu, A. Tanaka et al., Premature termination of reprogramming in vivo leads to cancer development through altered epigenetic regulation, Cell, vol.156, pp.663-677, 2014.

G. P. Fadini, D. Losordo, and S. Dimmeler, Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use, Circ Res, vol.110, pp.624-637, 2012.

E. Shantsila, T. Watson, and G. Y. Lip, Endothelial progenitor cells in cardiovascular disorders, J Am Coll Cardiol, vol.49, pp.741-752, 2007.

K. Callum and A. Bradbury, ABC of arterial and venous disease: acute limb ischaemia, BMJ, vol.320, pp.764-767, 2000.

M. A. Creager, J. A. Kaufman, and M. S. Conte, Clinical practice. Acute limb ischemia, N Engl J Med, vol.366, pp.2198-2206, 2012.

N. J. Leeper, A. L. Hunter, and J. P. Cooke, Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells, Circulation, vol.122, pp.517-526, 2010.

T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. Van-der-zee et al., Isolation of putative progenitor endothelial cells for angiogenesis, Science, vol.275, pp.964-967, 1997.

D. A. Ingram, L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio et al., Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood, Blood, vol.104, pp.2752-2760, 2004.

Y. Lin, D. J. Weisdorf, A. Solovey, and R. P. Hebbel, Origins of circulating endothelial cells and endothelial outgrowth from blood, J Clin Invest, vol.105, pp.71-77, 2000.

R. J. Medina, C. L. O'neill, M. Sweeney, J. Guduric-fuchs, T. A. Gardiner et al., Molecular analysis of endothelial progenitor cell (EPC) subtypes reveals two distinct cell populations with different identities, BMC Med Genomics, vol.3, p.18, 2010.

P. J. Critser and M. C. Yoder, Endothelial colonyforming cell role in neoangiogenesis and tissue repair, Curr Opin Organ Transplant, vol.15, pp.68-72, 2010.

S. H. Lee, J. H. Lee, T. Asahara, Y. S. Kim, H. C. Jeong et al., Genistein promotes endothelial colony-forming cell (ECFC) bioactivities and cardiac regeneration in myocardial infarction, PLoS One, vol.9, p.96155, 2014.

C. Bouvard, B. Gafsou, B. Dizier, I. Galy-fauroux, A. Lokajczyk et al., -integrin subunit plays a major role in the proangiogenic properties of endothelial progenitor cells, Arterioscler Thromb Vasc Biol, vol.30, pp.1569-1575, 2010.

J. Saif, T. M. Schwarz, D. Y. Chau, J. Henstock, P. Sami et al., Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization, Arterioscler Thromb Vasc Biol, vol.30, pp.1897-1904, 2010.

T. M. Schwarz, S. F. Leicht, T. Radic, I. Rodriguez-araboalaza, P. C. Hermann et al., Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy, Arterioscler Thromb Vasc Biol, vol.32, pp.13-21, 2012.

C. G. Palii, B. Vulesevic, S. Fraineau, E. Pranckeviciene, A. J. Griffith et al., Trichostatin A enhances vascular repair by injected human endothelial progenitors through increasing the expression of TAL1-dependent genes, Cell Stem Cell, vol.14, pp.644-657, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-02444604

C. Moubarik, B. Guillet, B. Youssef, J. L. Codaccioni, M. D. Piercecchi et al., Transplanted late outgrowth endothelial progenitor cells as cell therapy product for stroke, Stem Cell Rev, vol.7, pp.208-220, 2011.

M. R. Ward, D. J. Stewart, and M. J. Kutryk, Endothelial progenitor cell therapy for the treatment of coronary disease, acute MI, and pulmonary arterial hypertension: current perspectives, Catheter Cardiovasc Interv, vol.70, pp.983-998, 2007.

R. J. Medina, C. L. O'neill, M. W. Humphreys, T. A. Gardiner, and A. W. Stitt, Outgrowth endothelial cells: characterization and their potential for reversing ischemic retinopathy, Invest Ophthalmol Vis Sci, vol.51, pp.5906-5913, 2010.

R. S. Alphonse, A. Vadivel, M. Fung, W. C. Shelley, P. J. Critser et al., Existence, functional impairment, and lung repair potential of endothelial colony-forming cells in oxygen-induced arrested alveolar growth, Circulation, vol.129, pp.2144-2157, 2014.

K. L. Marcelo, L. C. Goldie, and K. K. Hirschi, Regulation of endothelial cell differentiation and specification, Circ Res, vol.112, pp.1272-1287, 2013.

C. Park, T. Kim, and A. B. Malik, Transcriptional regulation of endothelial cell and vascular development, Circ Res, vol.112, pp.1380-1400, 2013.

D. Val, S. Black, and B. L. , Transcriptional control of endothelial cell development, Dev Cell, vol.16, pp.180-195, 2009.

H. Kubo and K. Alitalo, The bloody fate of endothelial stem cells, Genes Dev, vol.17, pp.322-329, 2003.

D. Val and S. , Key transcriptional regulators of early vascular development, Arterioscler Thromb Vasc Biol, vol.31, pp.1469-1475, 2011.

T. Kume, Specification of arterial, venous, and lymphatic endothelial cells during embryonic development, Histol Histopathol, vol.25, pp.637-646, 2010.

L. R?-ossig, C. Urbich, T. Br?-uhl, E. Dernbach, C. Heeschen et al., Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells, J Exp Med, vol.201, pp.1825-1835, 2005.

Y. Song, X. Li, D. Wang, C. Fu, Z. Zhu et al., Transcription factor Kr? uppel-like factor 2 plays a vital role in endothelial colony forming cells differentiation, Cardiovasc Res, vol.99, pp.514-524, 2013.

B. Li, M. Carey, and J. L. Workman, The role of chromatin during transcription, Cell, vol.128, pp.707-719, 2007.

R. J. Klose and Y. Zhang, Regulation of histone methylation by demethylimination and demethylation, Nat Rev Mol Cell Biol, vol.8, pp.307-318, 2007.

T. Kouzarides, Chromatin modifications and their function, Cell, vol.128, pp.693-705, 2007.

H. Cedar and Y. Bergman, Linking DNA methylation and histone modification: patterns and paradigms, Nat Rev Genet, vol.10, pp.295-304, 2009.

O. Rando and H. Y. Chang, Genome-wide views of chromatin structure, Annu Rev Biochem, vol.78, pp.245-271, 2009.

J. E. Fish, C. C. Matouk, A. Rachlis, S. Lin, S. C. Tai et al., The expression of endothelial nitric-oxide synthase is controlled by a cellspecific histone code, J Biol Chem, vol.280, pp.24824-24838, 2005.

J. E. Fish and P. A. Marsden, Endothelial nitric oxide synthase: insight into cell-specific gene regulation in the vascular endothelium, Cell Mol Life Sci, vol.63, pp.144-162, 2006.

J. E. Fish, M. S. Yan, C. C. Matouk, S. Bernard, R. Ho et al., Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones, J Biol Chem, vol.285, pp.810-826, 2010.

Y. Chan, J. E. Fish, D. 'abreo, C. Lin, S. Robb et al., The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation, J Biol Chem, vol.279, pp.35087-35100, 2004.

E. Goretti, D. R. Wagner, and Y. Devaux, Regulation of endothelial progenitor cell function by micrornas, Minerva Cardioangiol, vol.61, pp.591-604, 2013.

S. M. Eken, H. Jin, E. Chernogubova, and L. Maegdefessel, Making sense in antisense: therapeutic potential of noncoding RNAs in diabetes-induced vascular dysfunction, J Diabetes Res, p.834727, 2013.

P. R. Laboratory-of-cardiovascular-research, C. Luxembourg, L. Division-of-cardiology, C. H. Luxembourg, L. Luxembourg et al., Role of microRNAs in endothelial progenitor cells: implication for cardiac repair, J Stem Cells, vol.9, pp.107-115, 2014.

S. Meng, J. T. Cao, B. Zhang, Q. Zhou, C. Shen et al., , p.126, 2012.

, in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1, J Mol Cell Cardiol, vol.53, pp.64-72

J. Zhang, Z. Zhang, D. Y. Zhang, J. Zhu, T. Zhang et al., microRNA 126 inhibits the transition of endothelial progenitor cells to mesenchymal cells via the PIK3R2-PI3K/Akt signalling pathway, PLoS One, vol.8, p.83294, 2013.

S. Meng, J. Cao, X. Zhang, Y. Fan, L. Fang et al., Downregulation of microRNA-130a contributes to endothelial progenitor cell dysfunction in diabetic patients via its target Runx3, PLoS One, vol.8, p.68611, 2013.

Q. Xu, S. Meng, B. Liu, M. Q. Li, Y. Li et al., MicroRNA-130a regulates autophagy of endothelial progenitor cells through Runx3, Clin Exp Pharmacol Physiol, vol.41, pp.351-357, 2014.

S. Zhu, S. Deng, Q. Ma, T. Zhang, C. Jia et al., MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2, Circ Res, vol.112, pp.152-164, 2013.

T. Y. Chang, T. S. Huang, H. W. Wang, S. J. Chang, H. H. Lo et al., ) miRNome traits analysis on endothelial lineage cells discloses biomarker potential circulating microRNAs which affect progenitor activities, BMC Genom, vol.15, 2014.

M. U. Kaikkonen, M. T. Lam, and C. K. Glass, Noncoding RNAs as regulators of gene expression and epigenetics, Cardiovasc Res, vol.90, pp.430-440, 2011.

G. B. Robb, A. R. Carson, S. C. Tai, J. E. Fish, S. Singh et al., Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript, J Biol Chem, vol.279, pp.37982-37996, 2004.

J. E. Fish, C. C. Matouk, E. Yeboah, S. C. Bevan, M. Khan et al., Hypoxiainducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase, J Biol Chem, vol.282, pp.15652-15666, 2007.

K. Li, Y. Blum, A. Verma, Z. Liu, K. Pramanik et al., A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo, Blood, vol.115, pp.133-139, 2010.

M. S. Yan, C. C. Matouk, and P. A. Marsden, Epigenetics of the vascular endothelium, J Appl Physiol, vol.109, pp.916-926, 1985.

R. M. Kohli and Y. Zhang, TET enzymes, TDG and the dynamics of DNA demethylation, Nature, vol.502, pp.472-479, 2013.

S. Banerjee and M. Bacanamwo, DNA methyltransferase inhibition induces mouse embryonic stem cell differentiation into endothelial cells, Exp Cell Res, vol.316, pp.172-180, 2010.

A. V. Shirodkar, S. Bernard, R. Gavryushova, A. Kop, A. Knight et al., A mechanistic role for DNA methylation in endothelial cell (EC)-enriched gene expression: relationship with DNA replication timing, Blood, vol.121, pp.3531-3540, 2013.

M. A. Lagarkova, P. Y. Volchkov, E. S. Philonenko, and S. L. Kiselev, Efficient differentiation of hESCs into endothelial cells in vitro is secured by epigenetic changes, Cell Cycle, vol.7, pp.2929-2935, 2008.

M. A. Lagarkova, M. V. Shutova, A. N. Bogomazova, E. M. Vassina, E. A. Glazov et al., Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale, Cell Cycle, vol.9, pp.937-946, 2010.

K. Ohtani, G. J. Vlachojannis, M. Koyanagi, J. N. Boeckel, C. Urbich et al., Epigenetic regulation of endothelial lineage committed genes in pro-angiogenic hematopoietic and endothelial progenitor cells, Zeiher AM & Dimmeler S, vol.109, pp.1219-1229, 2011.

P. A. Marks and W. S. Xu, Histone deacetylase inhibitors: potential in cancer therapy, J Cell Biochem, vol.107, pp.600-608, 2009.

P. A. Marks, Histone deacetylase inhibitors: a chemical genetics approach to understanding cellular functions, Biochim Biophys Acta, vol.1799, pp.717-725, 2010.

S. Y. Roth, J. M. Denu, and C. D. Allis, Histone acetyltransferases, Annu Rev Biochem, vol.70, pp.81-120, 2001.

B. C. Smith and J. M. Denu, Chemical mechanisms of histone lysine and arginine modifications, Biochim Biophys Acta, vol.1789, pp.45-57, 2009.

M. H. Kuo and C. D. Allis, Roles of histone acetyltransferases and deacetylases in gene regulation, BioEssays, vol.20, pp.615-626, 1998.

S. G. Gray, . Ekstr?, and . Tj, The human histone deacetylase family, Exp Cell Res, vol.262, pp.75-83, 2001.

V. Guarani, G. Deflorian, C. A. Franco, M. Kr?-uger, L. K. Phng et al., , 2011.

, Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase, Nature, vol.473, pp.234-238

M. Potente and S. Dimmeler, Emerging roles of SIRT1 in vascular endothelial homeostasis, Cell Cycle, vol.7, pp.2117-2122, 2008.

A. J. De-ruijter, A. H. Van-gennip, H. N. Caron, S. Kemp, and A. B. Van-kuilenburg, Histone deacetylases (HDACs): characterization of the classical HDAC family, Biochem J, vol.370, pp.737-749, 2003.

J. E. Bolden, M. J. Peart, and R. W. Johnstone, Anticancer activities of histone deacetylase inhibitors, Nat Rev Drug Discov, vol.5, pp.769-784, 2006.

L. Chen, W. Fischle, E. Verdin, and W. C. Greene, Duration of nuclear NF-kappaB action regulated by reversible acetylation, Science, vol.293, pp.1653-1657, 2001.

C. E. Crosson, S. K. Mani, S. Husain, O. Alsarraf, and D. R. Menick, Inhibition of histone deacetylase protects the retina from ischemic injury, Invest Ophthalmol Vis Sci, vol.51, pp.3639-3645, 2010.

Z. Zhang, X. Qin, N. Tong, X. Zhao, Y. Gong et al., Valproic acid-mediated neuroprotection in retinal ischemia injury via histone deacetylase inhibition and transcriptional activation, Exp Eye Res, vol.94, pp.98-108, 2012.

A. Granger, I. Abdullah, F. Huebner, A. Stout, T. Wang et al., Histone deacetylase inhibition reduces myocardial ischemiareperfusion injury in mice, FASEB J, vol.22, pp.3549-3560, 2008.

B. Illi, A. Scopece, S. Nanni, A. Farsetti, L. Morgante et al., Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress, Circ Res, vol.96, pp.501-508, 2005.

W. Chen, M. Bacanamwo, and D. G. Harrison, Activation of p300 histone acetyltransferase activity is an early endothelial response to laminar shear stress and is essential for stimulation of endothelial nitricoxide synthase mRNA transcription, J Biol Chem, vol.283, pp.16293-16298, 2008.

H. Kaur, S. Chen, X. Xin, J. Chiu, Z. A. Khan et al., Diabetes-induced extracellular matrix protein expression is mediated by transcription coactivator p300, Diabetes, vol.55, pp.3104-3111, 2006.

J. Q. Wei, L. A. Shehadeh, J. M. Mitrani, M. Pessanha, T. I. Slepak et al., Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300, Circulation, vol.118, pp.934-946, 2008.

L. A. Shehadeh, S. Sharma, M. Pessanha, J. Q. Wei, J. Liu et al., MicroRNA-20a constrains p300-driven myocardial angiogenic transcription by direct targeting of p300, PLoS One, vol.8, p.79133, 2013.

Z. Arany, L. E. Huang, R. Eckner, S. Bhattacharya, C. Jiang et al., An essential role for p300/CBP in the cellular response to hypoxia, Proc Natl Acad Sci, vol.93, pp.12969-12973, 1996.

J. J. Chiu and S. Chien, Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives, Physiol Rev, vol.91, pp.327-387, 2011.

C. Hahn and M. A. Schwartz, Mechanotransduction in vascular physiology and atherogenesis, Nat Rev Mol Cell Biol, vol.10, pp.53-62, 2009.

J. J. Chiu, S. Usami, and S. Chien, Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis, Ann Med, vol.41, pp.19-28, 2009.

O. Traub and B. C. Berk, Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force, Arterioscler Thromb Vasc Biol, vol.18, pp.677-685, 1998.

D. Y. Lee, C. I. Lee, T. E. Lin, S. H. Lim, J. Zhou et al., Role of histone deacetylases in transcription factor regulation and cell cycle modulation in endothelial cells in response to disturbed flow, Proc Natl Acad Sci, vol.109, pp.1967-1972, 2012.

Y. Gan, Y. H. Shen, J. Wang, X. Wang, B. Utama et al., Role of histone deacetylation in cellspecific expression of endothelial nitric-oxide synthase, J Biol Chem, vol.280, pp.16467-16475, 2005.

K. A. Hyndman, D. H. Ho, M. F. Sega, and J. S. Pollock, Histone deacetylase 1 reduces NO production in endothelial cells via lysine deacetylation of NO synthase 3, Am J Physiol Heart Circ Physiol, vol.307, p.5, 2014.

K. Nishida, D. G. Harrison, J. P. Navas, A. A. Fisher, S. P. Dockery et al., Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase, J Clin Invest, vol.90, pp.2092-2096, 1992.

I. Fleming and R. Busse, Signal transduction of eNOS activation, Cardiovasc Res, vol.43, pp.532-541, 1999.

L. Zeng, Y. Zhang, S. Chien, X. Liu, and J. Y. Shyy, The role of p53 deacetylation in p21Waf1 regulation by laminar flow, J Biol Chem, vol.278, pp.24594-24599, 2003.

D. Pandey, G. Sikka, Y. Bergman, J. H. Kim, S. Ryoo et al., Transcriptional regulation of endothelial arginase 2 by histone deacetylase 2, Arterioscler Thromb Vasc Biol, vol.34, pp.1556-1566, 2014.

J. Fan, O. Alsarraf, M. Dahrouj, K. A. Platt, C. J. Chou et al., Inhibition of HDAC2 protects the retina from ischemic injury, Invest Ophthalmol Vis Sci, vol.54, pp.4072-4080, 2013.

Q. Xiao, L. Zeng, Z. Zhang, A. Margariti, Z. A. Ali et al., Sca-1+ progenitors derived from embryonic stem cells differentiate into endothelial cells capable of vascular repair after arterial injury, Arterioscler Thromb Vasc Biol, vol.26, pp.2244-2251, 2006.

L. Zeng, Q. Xiao, A. Margariti, Z. Zhang, A. Zampetaki et al., HDAC3 is crucial in shear-and VEGF-induced stem cell differentiation toward endothelial cells, J Cell Biol, vol.174, pp.1059-1069, 2006.

A. Zampetaki, L. Zeng, A. Margariti, Q. Xiao, H. Li et al., Histone deacetylase 3 is critical in endothelial survival and atherosclerosis development in response to disturbed flow, Circulation, vol.121, pp.132-142, 2010.

L. Zeng, G. Wang, D. Ummarino, A. Margariti, Q. Xu et al., Histone deacetylase 3 unconventional splicing mediates endothelial-to-mesenchymal transition through transforming growth factor b2, J Biol Chem, vol.288, pp.31853-31866, 2013.

S. Chang, T. A. Mckinsey, C. L. Zhang, J. A. Richardson, J. A. Hill et al., Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development, Mol Cell Biol, vol.24, pp.8467-8476, 2004.

S. Chang, B. D. Young, S. Li, X. Qi, J. A. Richardson et al., Histone deacetylase 7 maintains vascular integrity by repressing matrix metalloproteinase 10, Cell, vol.126, pp.321-334, 2006.

S. Wang, X. Li, M. Parra, E. Verdin, R. Bassel-duby et al., Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7, Proc Natl Acad Sci, vol.105, pp.7738-7743, 2008.

X. Sun, L. Wei, Q. Chen, and R. M. Terek, HDAC4 represses vascular endothelial growth factor expression in chondrosarcoma by modulating RUNX2 activity, J Biol Chem, vol.284, pp.21881-21890, 2009.

C. Urbich, L. R?-ossig, D. Kaluza, M. Potente, J. N. Boeckel et al., HDAC5 is a repressor of angiogenesis and determines the angiogenic gene expression pattern of endothelial cells, Blood, vol.113, pp.5669-5679, 2009.

C. H. Ha, W. Wang, B. S. Jhun, C. Wong, A. Hausser et al., Protein kinase D-dependent phosphorylation and nuclear export of histone deacetylase 5 mediates vascular endothelial growth factor-induced gene expression and angiogenesis, J Biol Chem, vol.283, pp.14590-14599, 2008.

I. S. Kwon, W. Wang, S. Xu, and Z. G. Jin, Histone deacetylase 5 interacts with Kr? uppel-like factor 2 and inhibits its transcriptional activity in endothelium, Cardiovasc Res, vol.104, pp.127-137, 2014.

B. Illi, D. Russo, C. Colussi, C. Rosati, J. Pallaoro et al., Nitric oxide modulates chromatin folding in human endothelial cells via protein phosphatase 2A activation and class II histone deacetylases nuclear shuttling, Circ Res, vol.102, pp.51-58, 2008.

D. Mottet, A. Bellahc-ene, S. Pirotte, D. Waltregny, C. Deroanne et al., Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis, Circ Res, vol.101, pp.1237-1246, 2007.

A. Turtoi, D. Mottet, N. Matheus, B. Dumont, P. Peixoto et al., The angiogenesis suppressor gene AKAP12 is under the epigenetic control of HDAC7 in endothelial cells, Angiogenesis, vol.15, pp.543-554, 2012.

A. Margariti, A. Zampetaki, Q. Xiao, B. Zhou, E. Karamariti et al., Histone deacetylase 7 controls endothelial cell growth through modulation of betacatenin, Circ Res, vol.106, pp.1202-1211, 2010.

A. Margariti, Q. Xiao, A. Zampetaki, Z. Zhang, H. Li et al., Splicing of HDAC7 modulates the SRF-myocardin complex during stem-cell differentiation towards smooth muscle cells, J Cell Sci, vol.122, pp.460-470, 2009.

C. H. Ha, B. S. Jhun, H. Y. Kao, and Z. G. Jin, VEGF stimulates HDAC7 phosphorylation and cytoplasmic accumulation modulating matrix metalloproteinase expression and angiogenesis, Arterioscler Thromb Vasc Biol, vol.28, pp.1782-1788, 2008.

D. Yu, W. Chen, J. Ren, T. Zhang, K. Yang et al., VEGF-PKD1-HDAC7 signaling promotes endothelial progenitor cell migration and tube formation, Microvasc Res, vol.91, pp.66-72, 2014.

D. Kaluza, J. Kroll, S. Gesierich, Y. Manavski, J. N. Boeckel et al., Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17-92 cluster in endothelial cells, Arterioscler Thromb Vasc Biol, vol.33, pp.533-543, 2013.

D. Kaluza, J. Kroll, S. Gesierich, T. P. Yao, R. A. Boon et al., Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin, EMBO J, vol.30, pp.4142-4156, 2011.

M. Potente, L. Ghaeni, D. Baldessari, R. Mostoslavsky, L. Rossig et al., SIRT1 controls endothelial angiogenic functions during vascular growth, Genes Dev, vol.21, pp.2644-2658, 2007.

I. Mattagajasingh, C. S. Kim, A. Naqvi, T. Yamamori, T. A. Hoffman et al., SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase, Proc Natl Acad Sci, vol.104, pp.14855-14860, 2007.

J. Hou, Z. Z. Chong, Y. C. Shang, and K. Maiese, Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation, Curr Neurovasc Res, vol.7, pp.95-112, 2010.

Y. Zu, L. Liu, M. Y. Lee, C. Xu, Y. Liang et al., SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells, Circ Res, vol.106, pp.1384-1393, 2010.

P. F. Vassallo, S. Simoncini, I. Ligi, A. L. Chateau, R. Bachelier et al., Accelerated senescence of cord blood endothelial progenitor cells in premature neonates is driven by SIRT1 decreased expression, Blood, vol.123, pp.2116-2126, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01666068

P. A. Cloos, J. Christensen, K. Agger, and K. Helin, Erasing the methyl mark: histone demethylases at the center of cellular differentiation and disease, Genes Dev, vol.22, pp.1115-1140, 2008.

V. W. Zhou, A. Goren, and B. E. Bernstein, Charting histone modifications and the functional organization of mammalian genomes, Nat Rev Genet, vol.12, pp.7-18, 2011.

E. Calo and J. Wysocka, Modification of enhancer chromatin: what, how, and why?, Mol Cell, vol.49, pp.825-837, 2013.

B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells, Cell, vol.125, pp.315-326, 2006.

A. Rada-iglesias, R. Bajpai, T. Swigut, S. A. Brugmann, R. A. Flynn et al., A unique chromatin signature uncovers early developmental enhancers in humans, Nature, vol.470, pp.279-283, 2011.

C. A. Gifford, M. J. Ziller, H. Gu, C. Trapnell, J. Donaghey et al., Transcriptional and epigenetic dynamics during specification of human embryonic stem cells, Cell, vol.153, pp.1149-1163, 2013.

P. Voigt, W. W. Tee, and D. Reinberg, A double take on bivalent promoters, Genes Dev, vol.27, pp.1318-1338, 2013.

R. A. Varier and H. T. Timmers, Histone lysine methylation and demethylation pathways in cancer, Biochim Biophys Acta, vol.1815, pp.75-89, 2011.

J. C. Eissenberg and A. Shilatifard, Histone H3 lysine 4 (H3K4) methylation in development and differentiation, Dev Biol, vol.339, pp.240-249, 2010.

P. Ernst and C. R. Vakoc, WRAD: enabler of the SET1-family of H3K4 methyltransferases, Brief Funct Genomics, vol.11, pp.217-226, 2012.

P. Ernst, M. Mabon, A. J. Davidson, L. I. Zon, and S. J. Korsmeyer, An Mll-dependent Hox program drives hematopoietic progenitor expansion, Curr Biol, vol.14, pp.2063-2069, 2004.

P. Ernst, J. K. Fisher, W. Avery, S. Wade, D. Foy et al., Definitive hematopoiesis requires the mixed-lineage leukemia gene, Dev Cell, vol.6, pp.437-443, 2004.

J. L. Hess, B. D. Yu, B. Li, R. Hanson, and S. J. Korsmeyer, Defects in yolk sac hematopoiesis in Mll-null embryos, Blood, vol.90, pp.1799-1806, 1997.

F. Diehl, L. R?-ossig, A. M. Zeiher, S. Dimmeler, and C. Urbich, The histone methyltransferase MLL is an upstream regulator of endothelial-cell sprout formation, Blood, vol.109, pp.1472-1478, 2007.

Q. Li, L. Shi, G. B. Yu, W. Wang, J. Zhang et al., Binding of the JmjC demethylase JARID1B to LSD1/NuRD suppresses angiogenesis and metastasis in breast cancer cells by repressing chemokine CCL14, Cancer Res, vol.71, pp.6899-6908, 2011.

L. H. Pojoga, J. S. Williams, T. M. Yao, A. Kumar, J. D. Raffetto et al., Histone demethylase LSD1 deficiency during high-salt diet is associated with enhanced vascular contraction, altered NO-cGMP relaxation pathway, and hypertension, Am J Physiol Heart Circ Physiol, vol.301, pp.1862-1871, 2011.

G. G. Wang, C. Allis, and P. Chi, Chromatin remodeling and cancer. Part I: Covalent histone modifications, Trends Mol Med, vol.13, pp.363-372, 2007.

J. C. Black and J. R. Van-rechem-c-&-whetstine, Histone lysine methylation dynamics: establishment, regulation, and biological impact, Mol Cell, vol.48, pp.491-507, 2012.

A. W. Snowden, P. D. Gregory, C. C. Case, and C. O. Pabo, Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo, Curr Biol, vol.12, pp.2159-2166, 2002.

S. Varambally, S. M. Dhanasekaran, M. Zhou, T. R. Barrette, C. Kumar-sinha et al., The polycomb group protein EZH2 is involved in progression of prostate cancer, Nature, vol.419, pp.624-629, 2002.

C. G. Kleer, Q. Cao, S. Varambally, R. Shen, I. Ota et al., EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells, Proc Natl Acad Sci, vol.100, pp.11606-11611, 2003.

T. Tonini, D. 'andrilli, G. Fucito, A. Gaspa, L. Bagella et al., Importance of Ezh2 polycomb protein in tumorigenesis process interfering with the pathway of growth suppressive key elements, J Cell Physiol, vol.214, pp.295-300, 2008.

G. H. Richter, S. Plehm, A. Fasan, S. R?-ossler, R. Unland et al., EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation, Proc Natl Acad Sci, vol.106, pp.5324-5329, 2009.

C. Lu, H. D. Han, L. S. Mangala, R. Ali-fehmi, C. S. Newton et al., Regulation of tumor angiogenesis by EZH2, Cancer Cell, vol.18, pp.185-197, 2010.

M. Smits, S. E. Mir, R. J. Nilsson, P. M. Van-der-stoop, J. M. Niers et al., Downregulation of miR-101 in endothelial cells promotes blood vessel formation through reduced repression of EZH2, PLoS One, vol.6, p.16282, 2011.

H. Dreger, A. Ludwig, A. Weller, V. Stangl, G. Baumann et al., Epigenetic regulation of cell adhesion and communication by enhancer of zeste homolog 2 in human endothelial cells, Hypertension, vol.60, pp.1176-1183, 2012.

T. Mitic, A. Caporali, I. Floris, M. Meloni, M. Marchetti et al., EZH2 modulates angiogenesis in vitro and in a mouse model of limb ischemia, Mol Ther, vol.23, pp.32-42, 2015.

G. L. Dalgliesh, K. Furge, C. Greenman, L. Chen, G. Bignell et al., Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes, Nature, vol.463, pp.360-363, 2010.

K. Agger, P. A. Cloos, J. Christensen, D. Pasini, S. Rose et al., UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development, Nature, vol.449, pp.731-734, 2007.

Q. H. Zhang, M. Ye, X. Y. Wu, S. X. Ren, M. Zhao et al., Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells, Genome Res, vol.10, pp.1546-1560, 2000.

M. Hu, X. J. Sun, Y. L. Zhang, Y. Kuang, C. Q. Hu et al., , 2010.

, Histone H3 lysine 36 methyltransferase Hypb/Setd2 is required for embryonic vascular remodeling, Proc Natl Acad Sci, vol.107, pp.2956-2961

C. Khan, N. Pathe, S. Fazal, J. Lister, and J. M. Rossetti, Azacitidine in the management of patients with myelodysplastic syndromes, Ther Adv Hematol, vol.3, pp.355-373, 2012.

E. J. Derissen, J. H. Beijnen, and J. H. Schellens, Concise drug review: azacitidine and decitabine, Oncologist, vol.18, pp.619-624, 2013.

D. Dhanak and P. Jackson, Development and classes of epigenetic drugs for cancer, Biochem Biophys Res Commun, vol.455, pp.58-69, 2014.

H. Rafehi, A. Balcerczyk, S. Lunke, A. Kaspi, M. Ziemann et al., Vascular histone deacetylation by pharmacological HDAC inhibition, Genome Res, vol.24, pp.1271-1284, 2014.

F. Iordache, C. Buzila, A. Constantinescu, E. Andrei, and H. Maniu, Histone deacetylase (HDAC) inhibitors down-regulate endothelial lineage commitment of umbilical cord blood derived endothelial progenitor cells, Int J Mol Sci, vol.13, pp.15074-15085, 2012.

L. R?-ossig, H. Li, B. Fisslthaler, C. Urbich, I. Fleming et al., , 2002.

, Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis, Circ Res, vol.91, pp.837-844

Y. Gan, Y. H. Shen, B. Utama, J. Wang, J. Coselli et al., Dual effects of histone deacetylase inhibition by trichostatin A on endothelial nitric oxide synthase expression in endothelial cells, Biochem Biophys Res Commun, vol.340, pp.29-34, 2006.

F. Thaler and S. Minucci, Next generation histone deacetylase inhibitors: the answer to the search for optimized epigenetic therapies?, Expert Opin Drug Discov, vol.6, pp.393-404, 2011.

R. Ria, I. Catacchio, S. Berardi, D. Luisi, A. Caivano et al., HIF-1a of bone marrow endothelial cells implies relapse and drug resistance in patients with multiple myeloma and may act as a therapeutic target, Clin Cancer Res, vol.20, pp.847-858, 2014.

M. Michaelis, U. R. Michaelis, I. Fleming, T. Suhan, J. Cinatl et al., Valproic acid inhibits angiogenesis in vitro and in vivo, Mol Pharmacol, vol.65, pp.520-527, 2004.

M. Michaelis, T. Suhan, U. R. Michaelis, K. Beek, F. Rothweiler et al., Valproic acid induces extracellular signal-regulated kinase 1/2 activation and inhibits apoptosis in endothelial cells, Cell Death Differ, vol.13, pp.446-453, 2006.

M. Dokmanovic, C. Clarke, and P. A. Marks, Histone deacetylase inhibitors: overview and perspectives, Mol Cancer Res, vol.5, pp.981-989, 2007.

M. G. Lee, C. Wynder, D. M. Schmidt, D. G. Mccafferty, and R. Shiekhattar, Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications, Chem Biol, vol.13, pp.563-567, 2006.

S. Konovalov and I. Garcia-bassets, Analysis of the levels of lysine-specific demethylase 1 (LSD1) mRNA in human ovarian tumors and the effects of chemical LSD1 inhibitors in ovarian cancer cell lines, J Ovarian Res, vol.6, p.75, 2013.

T. Schenk, W. C. Chen, S. G?-ollner, L. Howell, J. L. Hebestreit et al., Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-transretinoic acid differentiation pathway in acute myeloid leukemia, Nat Med, vol.18, pp.605-611, 2012.

L. Shi, S. Cui, J. D. Engel, and O. Tanabe, Lysinespecific demethylase 1 is a therapeutic target for fetal hemoglobin induction, Nat Med, vol.19, pp.291-294, 2013.

R. I. Glazer, K. D. Hartman, M. C. Knode, M. M. Richard, P. K. Chiang et al., 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60, 1986.

, Biochem Biophys Res Commun, vol.135, pp.688-694

J. Tan, X. Yang, L. Zhuang, X. Jiang, W. Chen et al., Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells, Genes Dev, vol.21, pp.1050-1063, 2007.

T. B. Miranda, C. C. Cortez, C. B. Yoo, G. Liang, M. Abe et al., DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation, Mol Cancer Ther, vol.8, pp.1579-1588, 2009.

M. T. Mccabe, H. M. Ott, G. Ganji, S. Korenchuk, C. Thompson et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations, Nature, vol.492, pp.108-112, 2012.

S. K. Verma, X. Tian, L. V. Lafrance, C. Duquenne, D. P. Suarez et al., Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2, ACS Med Chem Lett, vol.3, pp.1091-1096, 2012.

S. K. Knutson, T. J. Wigle, N. M. Warholic, C. J. Sneeringer, C. J. Allain et al., A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells, Nat Chem Biol, vol.8, pp.890-896, 2012.

M. D. Amatangelo, A. Garipov, H. Li, J. R. Conejo-garcia, D. W. Speicher et al., Threedimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition, Cell Cycle, vol.12, pp.2113-2119, 2013.

W. B-eguelin, R. Popovic, M. Teater, Y. Jiang, K. L. Bunting et al., EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation, Cancer Cell, vol.23, pp.677-692, 2013.

C. Mozzetta, J. Pontis, L. Fritsch, P. Robin, M. Portoso et al., The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing, Mol Cell, vol.53, pp.277-289, 2014.

H. Han, X. Yang, K. Pandiyan, and G. Liang, Synergistic re-activation of epigenetically silenced genes by combinatorial inhibition of DNMTs and LSD1 in cancer cells, PLoS One, vol.8, p.75136, 2013.

W. Fiskus, S. Sharma, B. Shah, B. P. Portier, S. G. Devaraj et al., Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells, Leukemia, vol.28, pp.2155-2164, 2014.