, BCA assay, bicinchoninic acid assay

, N-cyclohexyl-N?-(4-iodophenyl)urea

. Cox-1,

, CV, coefficient of variance

N. Dmf and N. ,

. Dmso,

, DSF, differential scanning fluorimetry; EET, epoxyeicosatrienoic acid

, EpFA, epoxy fatty acid

, FCS, fetal calf serum; FDP, fluorescein diphosphate

, FXR, farnesoid X receptor; HTS, highthroughput screening; IS, internal standard; ITC, isothermal titration calorimetry

. Lbd, . Lda, ;. Lxr, and N. Nbs,

, ORF, open reading frame; PGE2, prostaglandin E2, PPAR, peroxisome proliferator-activated receptor; RLU, relative light units

, ROS, reactive oxygen species; RXR, retinoid X receptor

. Sar and . Sds, sodium dodecyl sulfate; sEH, soluble epoxide hydrolase; sEH-H, C-terminal/hydrolase domain of sEH; sEHI, inhibitors of the C-terminal domain of sEH; sEH-P, N-terminal/phosphatase domain of sEH

, -carboxyethyl)phosphine, TCEP, issue.2

. Tev, ;. Thf, and . Tmscn,

?. References,

M. Arand, A. Cronin, F. Oesch, S. L. Mowbray, and T. Jones, The Telltale Structures of Epoxide Hydrolases, Drug Metab. Rev, vol.35, issue.4, pp.365-383, 2003.

K. M. Wagner, C. B. Mcreynolds, W. K. Schmidt, and B. D. Hammock, Soluble Epoxide Hydrolase as a Therapeutic Target for Pain, Inflammatory and Neurodegenerative Diseases, Pharmacol. Ther, vol.180, pp.62-76, 2017.

B. Inceoglu, A. Bettaieb, F. G. Haj, A. V. Gomes, and B. D. Hammock, Modulation of Mitochondrial Dysfunction and Endoplasmic Reticulum Stress Are Key Mechanisms for the Wide-Ranging Actions of Epoxy Fatty Acids and Soluble Epoxide Hydrolase Inhibitors, Prostaglandins Other Lipid Mediators, vol.133, pp.68-78, 2017.

A. L. Lazaar, L. Yang, R. L. Boardley, N. S. Goyal, J. Robertson et al., Pharmacodynamics and Adverse Event Profile of GSK2256294, a Novel Soluble Epoxide Hydrolase Inhibitor, Br. J. Clin. Pharmacol, vol.81, issue.5, pp.971-979, 2016.

A. Cronin, S. Mowbray, H. Durk, S. Homburg, I. Fleming et al., The N-Terminal Domain of Mammalian Soluble Epoxide Hydrolase Is a Phosphatase, Proc. Natl. Acad. Sci. U. S. A, vol.100, issue.4, pp.1552-1557, 2003.

J. W. Newman, C. Morisseau, T. R. Harris, and B. D. Hammock, The Soluble Epoxide Hydrolase Encoded by EPXH2 Is a Bifunctional Enzyme with Novel Lipid Phosphate Phosphatase Activity, Proc. Natl. Acad. Sci. U. S. A, vol.100, issue.4, pp.1558-1563, 2003.

K. L. Tran, P. A. Aronov, H. Tanaka, J. W. Newman, B. D. Hammock et al., Lipid Sulfates and Sulfonates Are Allosteric Competitive Inhibitors of the N-Terminal Phosphatase Activity of the Mammalian Soluble Epoxide Hydrolase, Biochemistry, vol.44, issue.36, pp.12179-12187, 2005.

C. Morisseau, N. H. Schebb, H. Dong, A. Ulu, P. A. Aronov et al., Role of Soluble Epoxide Hydrolase Phosphatase Activity in the Metabolism of Lysophosphatidic Acids, Biochem. Biophys. Res. Commun, vol.2012, issue.4, pp.796-800

A. Oguro and S. Imaoka, Lysophosphatidic Acids Are New Substrates for the Phosphatase Domain of Soluble Epoxide Hydrolase, J. Lipid Res, vol.53, issue.3, pp.505-512, 2012.

M. De-vivo, B. Ensing, M. Dal-peraro, G. A. Gomez, D. W. Christianson et al., Proton Shuttles and Phosphatase Activity in Soluble Epoxide Hydrolase, J. Am. Chem. Soc, vol.129, issue.2, pp.387-394, 2007.

J. Kramer and E. Proschak, Phosphatase Activity of Soluble Epoxide Hydrolase, Prostaglandins Other Lipid Mediators, vol.133, pp.88-92, 2017.

H. Hou, Y. Liao, S. Hsiao, S. Shyue, and T. Lee, Role of Phosphatase Activity of Soluble Epoxide Hydrolase in Regulating Simvastatin-Activated Endothelial Nitric Oxide Synthase, Sci. Rep, vol.5, p.13524, 2015.

A. E. Enayetallah and D. F. Grant, Effects of Human Soluble Epoxide Hydrolase Polymorphisms on Isoprenoid Phosphate Hydrolysis, Biochem. Biophys. Res. Commun, vol.341, issue.1, pp.254-260, 2006.

N. Matsumoto, E. Suzuki, M. Ishikawa, T. Shirafuji, and K. Hasumi, Soluble Epoxide Hydrolase as an Anti-Inflammatory Target of the Thrombolytic Stroke Drug SMTP-7, J. Biol. Chem, issue.52, pp.35826-35838, 2014.

C. Morisseau, S. Sahdeo, G. Cortopassi, and B. D. Hammock, Development of an HTS Assay for EPHX2 Phosphatase Activity and Screening of Nontargeted Libraries, Anal. Biochem, vol.434, issue.1, pp.105-111, 2013.

F. Klingler, M. Wolf, S. Wittmann, P. Gribbon, and E. Proschak, Bacterial Expression and HTS Assessment of Soluble Epoxide Hydrolase Phosphatase, J. Biomol. Screening, vol.21, issue.7, pp.689-694, 2016.

G. Stork and L. Maldonado, Anions of Protected Cyanohydrins as Acyl Carbanion Equivalents and Their Use in a New Synthesis of Ketones, J. Am. Chem. Soc, vol.93, issue.20, pp.5286-5287, 1971.

J. G. Topliss, Utilization of Operational Schemes for Analog Synthesis in Drug Design, J. Med. Chem, issue.10, pp.1006-1011, 1972.

M. A. Argiriadi, C. Morisseau, M. H. Goodrow, D. L. Dowdy, B. D. Hammock et al., Binding of Alkylurea Inhibitors to Epoxide Hydrolase Implicates Active Site Tyrosines in Substrate Activation, J. Biol. Chem, issue.20, pp.15265-15270, 2000.

C. Heroven, V. Georgi, G. K. Ganotra, P. Brennan, F. Wolfreys et al., Halogen?Aromatic ? Interactions Modulate Inhibitor Residence Times, Angew. Chem., Int. Ed, vol.57, issue.24, pp.7220-7224, 2018.

H. Falke, A. Chaikuad, A. Becker, N. Loaec, O. Lozach et al., 10-Iodo-11H-Indolo[3,2-c]Quinoline-6-Carboxylic Acids Are Selective Inhibitors of DYRK1A, J. Med. Chem, issue.7, pp.3131-3143, 2015.

L. O?ster, S. Tapani, Y. Xue, and H. Kack, Successful Generation of Structural Information for Fragment-Based Drug Discovery. Drug Discovery Today, vol.20, pp.1104-1111, 2015.

E. Barbosa-sicard, T. Fromel, B. Keseru, R. P. Brandes, C. Morisseau et al., Inhibition of the Soluble Epoxide Hydrolase by Tyrosine Nitration, J. Biol. Chem, issue.41, pp.28156-28163, 2009.

S. Hahn, J. Achenbach, E. Buscato, F. Klingler, M. Schroeder et al., Complementary Screening Techniques Yielded Fragments That Inhibit the Phosphatase Activity of Soluble Epoxide Hydrolase, ChemMedChem, vol.6, issue.12, pp.2146-2149, 2011.

A. Lukin, J. Kramer, M. Hartmann, L. Weizel, V. Hernandez-olmos et al., Dar'in, D.; Krasavin, M. Discovery of Polar Spirocyclic Orally Bioavailable Urea Inhibitors of Soluble Epoxide Hydrolase, Bioorg. Chem, vol.80, pp.655-667, 2018.

F. W. Studier, Protein Production by Auto-Induction in High Density Shaking Cultures, Protein Expression Purif, vol.41, issue.1, pp.207-234, 2005.

C. Morisseau, J. K. Beetham, F. Pinot, S. Debernard, J. W. Newman et al., Cress and Potato Soluble Epoxide Hydrolases: Purification, Biochemical Characterization, and Comparison to Mammalian Enzymes, Arch. Biochem. Biophys, vol.378, issue.2, pp.321-332, 2000.

C. Morisseau, O. Merzlikin, A. Lin, G. He, W. Feng et al., Toxicology in the Fast Lane: Application of High-Throughput Bioassays to Detect Modulation of Key Enzymes and Receptors, Environ. Health Perspect, vol.117, issue.12, pp.1867-1872, 2009.

N. M. Wolf, C. Morisseau, P. D. Jones, B. Hock, and B. D. Hammock, Development of a High-Throughput Screen for Soluble Epoxide Hydrolase Inhibition, Anal. Biochem, vol.355, issue.1, pp.71-80, 2006.

F. H. Niesen, H. Berglund, and M. Vedadi, The Use of Differential Scanning Fluorimetry to Detect Ligand Interactions That Promote Protein Stability, Nat. Protoc, vol.2, issue.9, pp.2212-2221, 2007.

G. Winter, C. M. Lobley, and S. M. Prince, Decision Making in Xia2, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.69, issue.7, pp.1260-1273, 2013.

M. D. Winn, C. C. Ballard, K. D. Cowtan, E. J. Dodson, P. Emsley et al., Overview of the CCP4 Suite and Current Developments, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.67, issue.4, pp.235-242, 2011.

P. R. Evans, An Introduction to Data Reduction: Space-Group Determination, Scaling and Intensity Statistics, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.67, issue.4, pp.282-292, 2011.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., J. Appl. Crystallogr, vol.40, issue.4, pp.658-674, 2007.

P. D. Adams, P. V. Afonine, G. Bunko?zi, V. B. Chen, I. W. Davis et al., A Comprehensive Python-Based System for Macromolecular Structure Solution, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.66, issue.2, pp.213-221, 2010.

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and Development of Coot, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.66, issue.4, pp.486-501, 2010.

N. W. Moriarty, R. W. Grosse-kunstleve, and P. D. Adams, Electronic Ligand Builder and Optimization Workbench (ELBOW): A Tool for Ligand Coordinate and Restraint Generation, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.65, issue.10, pp.1074-1080, 2009.

P. V. Afonine, R. W. Grosse-kunstleve, N. Echols, J. J. Headd, N. W. Moriarty et al., Towards Automated Crystallographic Structure Refinement with phenix.ref ine, Acta Crystallogr., Sect. D: Biol. Crystallogr, vol.2012, issue.4, pp.352-367

M. Hoxha, C. Buccellati, V. Capra, D. Garella, C. Cena et al., In Vitro Pharmacological Evaluation of Multitarget Agents for Thromboxane Prostanoid Receptor Antagonism and COX-2 Inhibition, Pharmacol. Res, vol.103, pp.132-143, 2016.

M. Bertinaria, M. A. Shaikh, C. Buccellati, C. Cena, B. Rolando et al., Designing Multitarget Anti-Inflammatory Agents: Chemical Modulation of the Lumiracoxib Structure toward Dual Thromboxane Antagonists-COX-2 Inhibitors, ChemMedChem, vol.2012, issue.9, pp.1647-1660

O. Rau, M. Wurglics, A. Paulke, J. Zitzkowski, N. Meindl et al., Carnosic Acid and Carnosol, Phenolic Diterpene Compounds of the Labiate Herbs Rosemary and Sage, Are Activators of the Human Peroxisome Proliferator-Activated Receptor Gamma, Planta Med, vol.72, issue.10, pp.881-887, 2006.

P. Heitel, J. Achenbach, D. Moser, E. Proschak, and D. Merk, DrugBank Screening Revealed Alitretinoin and Bexarotene as Liver X Receptor Modulators, Bioorg. Med. Chem. Lett, issue.5, pp.1193-1198, 2017.

D. Flesch, S. Cheung, J. Schmidt, M. Gabler, P. Heitel et al., Nonacidic Farnesoid X Receptor Modulators, J. Med. Chem, vol.2017, issue.16, pp.7199-7205