T. Asahara, T. Murohara, A. Sullivan, M. Silver, R. Van-der-zee et al., Isolation of putative progenitor endothelial cells for angiogenesis, Science, vol.275, pp.964-967, 1997.

P. Au, L. M. Daheron, D. G. Duda, K. S. Cohen, J. A. Tyrrell et al., , vol.111, pp.1302-1305, 2008.

C. Bouvard, B. Gafsou, B. Dizier, I. Galy-fauroux, A. Lokajczyk et al., alpha6-integrin subunit plays a major role in the proangiogenic properties of endothelial progenitor cells, Arterioscler. Thromb. Vasc. Biol, vol.30, pp.1569-1575, 2010.

M. Brand, S. Rampalli, C. P. Chaturvedi, and F. J. Dilworth, Analysis of epigenetic modifications of chromatin at specific gene loci by native chromatin immunoprecipitation of nucleosomes isolated using hydroxyapatite chromatography, Nat. Protoc, vol.3, pp.398-409, 2008.

T. Bruhl, C. Urbich, D. Aicher, A. Acker-palmer, A. M. Zeiher et al., Homeobox A9 transcriptionally regulates the EphB4 receptor to modulate endothelial cell migration and tube formation, Circ. Res, vol.94, pp.743-751, 2004.

K. Callum and A. Bradbury, ABC of arterial and venous disease: Acute limb ischaemia, BMJ, vol.320, pp.764-767, 2000.

D. J. Ceradini, A. R. Kulkarni, M. J. Callaghan, O. M. Tepper, N. Bastidas et al., Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1, Nat. Med, vol.10, pp.858-864, 2004.

R. Chetty, M. A. Dada, C. H. Boshoff, M. A. Comley, S. C. Biddolph et al., TAL-1 protein expression in vascular lesions, J. Pathol, vol.181, pp.311-315, 1997.

G. Costa, A. Mazan, A. Gandillet, S. Pearson, G. Lacaud et al., SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development, Development, vol.139, pp.1587-1598, 2012.

M. A. Creager, J. A. Kaufman, and M. S. Conte, Clinical practice. Acute limb ischemia, N. Engl. J. Med, vol.366, pp.2198-2206, 2012.

S. De-val and B. L. Black, Transcriptional control of endothelial cell development, Dev. Cell, vol.16, pp.180-195, 2009.

V. Deleuze, E. Chalhoub, R. El-hajj, C. Dohet, M. Le-clech et al., TAL-1/SCL and its partners E47 and LMO2 up-regulate VE-cadherin expression in endothelial cells, Mol. Cell. Biol, vol.27, pp.2687-2697, 2007.

K. A. Dooley, A. J. Davidson, and L. I. Zon, Zebrafish scl functions independently in hematopoietic and endothelial development, Dev. Biol, vol.277, pp.522-536, 2005.

G. P. Fadini, D. Losordo, and S. Dimmeler, Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use, Circ. Res, vol.110, pp.624-637, 2012.

A. P. Fong, Z. Yao, J. W. Zhong, Y. Cao, W. L. Ruzzo et al., Genetic and epigenetic determinants of neurogenesis and myogenesis, Dev. Cell, vol.22, pp.721-735, 2012.

T. Fujiwara, H. O'geen, S. Keles, K. Blahnik, A. K. Linnemann et al., Discovering hematopoietic mechanisms through genome-wide analysis of GATA factor chromatin occupancy, Mol. Cell, vol.36, pp.667-681, 2009.

M. Grunewald, I. Avraham, Y. Dor, E. Bachar-lustig, A. Itin et al., VEGFinduced adult neovascularization: recruitment, retention, and role of accessory cells, Cell, vol.124, pp.175-189, 2006.

, Increased arteriole density in the ischemic muscle of mice injected with TSA-treated ECFCs. Quantification of SMA + vessels 4 days after ECFCs transplantation. Results are expressed as the number of SMA + vessels per FOV ± SEM

, Immunostaining was performed on ischemic muscle cryosections with a human-specific mitochondrial Ab (hMito, green) and a murine-specific smooth muscle actin Ab (SMA, red) 4 days after injection of PBS (no cells), ECFCs pretreated with TSA (+TSA) or untreated ECFCs. Nuclei were stained with DAPI (blue). Left panels, scale bar: 50 mm

, TSA-treated ECFCs express higher levels of hCXCR4 in the ischemic muscle. qRT-PCR was performed on RNA isolated from whole dissected ischemic muscles injected with PBS or with ECFCs pretreated with TSA (+TSA) or not (ÀTSA) using primers specific for human CXCR4 (hCXCR4). qRT-PCR values for hCXCR4 are normalized to the total number of engrafted ECFCs per mouse muscle (quantified by measuring human Alu repeats as previously described

, Higher expression of hVEGFA in the ischemic muscle injected with TSA-treated ECFCs. Expression of human VEGFA (hVEGFA) was determined by qRT-PCR as described for hCXCR4 in (F)

, See also Figure S6

S. Huang, Y. Qiu, R. W. Stein, and S. J. Brandt, , 1999.

S. Huang, Y. Qiu, Y. Shi, Z. Xu, and S. J. Brandt, , 2000.

/. Scl, EMBO J, vol.19, pp.6792-6803

D. A. Ingram, L. E. Mead, H. Tanaka, V. Meade, A. Fenoglio et al., , pp.2752-2760, 2004104.

A. R. Kallianpur, J. E. Jordan, and S. J. Brandt, vascular systems during embryogenesis, Blood, vol.83, pp.1200-1208, 1994.

M. Khandekar, W. Brandt, Y. Zhou, S. Dagenais, T. W. Glover et al., A Gata2 intronic enhancer confers its pan-endothelia-specific regulation, Development, vol.134, pp.1703-1712, 2007.

D. Kuraitis, C. Hou, Y. Zhang, B. Vulesevic, T. Sofrenovic et al., , 2011.

, Mol. Cell. Cardiol, vol.51, pp.187-197

C. Lancrin, P. Sroczynska, C. Stephenson, T. Allen, V. Kouskoff et al., The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage, Nature, vol.457, pp.892-895, 2009.

R. H. Lee, S. C. Hsu, J. Munoz, J. S. Jung, N. R. Lee et al., A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice, Blood, vol.107, pp.2153-2161, 2006.

N. J. Leeper, A. L. Hunter, and J. P. Cooke, Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells, Circulation, vol.122, pp.517-526, 2010.

A. Limbourg, T. Korff, L. C. Napp, W. Schaper, H. Drexler et al., Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia, Nat. Protoc, vol.4, pp.1737-1746, 2009.

Y. Lin, D. J. Weisdorf, A. Solovey, and R. P. Hebbel, Origins of circulating endothelial cells and endothelial outgrowth from blood, J. Clin. Invest, vol.105, pp.71-77, 2000.

J. Liu, J. Huang, W. Y. Yao, Q. W. Ben, D. F. Chen et al., The origins of vacularization in tumors, Front Biosci, vol.17, pp.2559-2565, 2012.

C. Y. Mclean, D. Bristor, M. Hiller, S. L. Clarke, B. T. Schaar et al., GREAT improves functional interpretation of cis-regulatory regions, Nat. Biotechnol, vol.28, pp.495-501, 2010.

J. M. Melero-martin, Z. A. Khan, A. Picard, X. Wu, S. Paruchuri et al., In vivo vasculogenic potential of human blood-derived endothelial progenitor cells, Blood, vol.109, pp.4761-4768, 2007.

C. Moubarik, B. Guillet, B. Youssef, J. L. Codaccioni, M. D. Piercecchi et al., , 2011.

C. G. Palii, R. Pasha, and M. Brand, Lentiviral-mediated knockdown during ex vivo erythropoiesis of human hematopoietic stem cells, J. Vis. Exp, issue.53, p.2813, 2011.

C. G. Palii, C. Perez-iratxeta, Z. Yao, Y. Cao, F. Dai et al., Differential genomic targeting of the transcription factor TAL1 in alternate haematopoietic lineages, 2011.

, EMBO J, vol.30, pp.494-509

L. J. Patterson, M. Gering, and R. Patient, Scl is required for dorsal aorta as well as blood formation in zebrafish embryos, Blood, vol.105, pp.3502-3511, 2005.

A. Reinisch, N. A. Hofmann, A. C. Obenauf, K. Kashofer, E. Rohde et al., Humanized large-scale expanded endothelial colony-forming cells function in vitro and in vivo, Blood, vol.113, pp.6716-6725, 2009.

L. Rö-ssig, C. Urbich, T. Brü-hl, E. Dernbach, C. Heeschen et al., Histone deacetylase activity is essential for the expression of HoxA9 and for endothelial commitment of progenitor cells, J. Exp. Med, vol.201, pp.1825-1835, 2005.

J. Saif, T. M. Schwarz, D. Y. Chau, J. Henstock, P. Sami et al., Combination of injectable multiple growth factor-releasing scaffolds and cell therapy as an advanced modality to enhance tissue neovascularization, Arterioscler. Thromb. Vasc. Biol, vol.30, pp.1897-1904, 2010.

O. Salvucci and G. Tosato, Essential roles of EphB receptors and EphrinB ligands in endothelial cell function and angiogenesis, Adv. Cancer Res, vol.114, pp.21-57, 2012.

T. M. Schwarz, S. F. Leicht, T. Radic, I. Rodriguez-araboalaza, P. C. Hermann et al., Vascular incorporation of endothelial colony-forming cells is essential for functional recovery of murine ischemic tissue following cell therapy, Arterioscler. Thromb. Vasc. Biol, vol.32, pp.13-21, 2012.

R. A. Shivdasani, E. L. Mayer, and S. H. Orkin, Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL, Nature, vol.373, pp.432-434, 1995.

E. Soler, C. Andrieu-soler, E. De-boer, J. C. Bryne, S. Thongjuea et al., The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation, Genes Dev, vol.24, pp.277-289, 2010.

B. Van-handel, A. Montel-hagen, R. Sasidharan, H. Nakano, R. Ferrari et al., , 2012.

, Scl represses cardiomyogenesis in prospective hemogenic endothelium and endocardium, Cell, vol.150, pp.590-605

J. E. Visvader, Y. Fujiwara, and S. H. Orkin, Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development, Genes Dev, vol.12, pp.473-479, 1998.

Z. Wang, C. Zang, K. Cui, D. E. Schones, A. Barski et al.,

, Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes, Cell, vol.138, pp.1019-1031

N. K. Wilson, S. D. Foster, X. Wang, K. Knezevic, J. Schü-tte et al., , 2010.

, Combinatorial transcriptional control in blood stem/progenitor cells: genome-wide analysis of ten major transcriptional regulators, Cell Stem Cell, vol.7, pp.532-544

M. C. Yoder, Human endothelial progenitor cells. Cold Spring Harb, Perspect. Med, vol.2, p.6692, 2012.

M. C. Yoder, L. E. Mead, D. Prater, T. R. Krier, K. N. Mroueh et al., Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals, Blood, vol.109, pp.1801-1809, 2007.

L. Zeng and M. M. Zhou, Bromodomain: an acetyl-lysine binding domain, FEBS Lett, vol.513, pp.124-128, 2002.

T. Ziebart, C. H. Yoon, T. Trepels, A. Wietelmann, T. Braun et al., Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia, Circ. Res, vol.103, pp.1327-1334, 2008.