G. A. Roth, Demographic and epidemiologic drivers of global cardiovascular mortality, N. Engl. J. Med, vol.372, issue.14, pp.1333-1341, 2015.

E. J. Benjamin, Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association, Circulation, vol.135, issue.10, pp.146-603, 2017.

I. Albanese, K. Khan, B. Barratt, H. Al-kindi, and A. Schwertani, Atherosclerotic Calcification: Wnt Is the Hint, J Am Heart Assoc, vol.7, issue.4, 2018.

A. L. Durham, M. Y. Speer, M. Scatena, C. M. Giachelli, and C. M. Shanahan, Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness, Cardiovasc. Res, vol.114, issue.4, pp.590-600, 2018.

C. Weber and H. Noels, Atherosclerosis: current pathogenesis and therapeutic options, Nat. Med, vol.17, issue.11, pp.1410-1422, 2011.

C. Rüegg, J. Tissot, P. Farmer, and A. Mariotti, Omics meets hypothesis-driven research. Partnership for innovative discoveries in vascular biology and angiogenesis, Thromb. Haemost, vol.100, issue.5, pp.738-746, 2008.

A. F. Dominiczak, Systems biology to battle vascular disease, Nephrol. Dial. Transplant, vol.25, issue.4, pp.1019-1022, 2010.

S. T. Vernon, Utilizing state-of-the-art "omics" technology and bioinformatics to identify new biological mechanisms and biomarkers for coronary artery disease, Microcirculation, 2018.

M. Mokou, V. Lygirou, A. Vlahou, and H. Mischak, Proteomics in cardiovascular disease: recent progress and clinical implication and implementation, Expert Rev Proteomics, vol.14, issue.2, pp.117-136, 2017.

J. Lamb, The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease, Science, vol.313, issue.5795, pp.1929-1935, 2006.

D. Xi, Identification of Gene Expression Changes in the Aorta of ApoE Null Mice Fed a High-Fat Diet, Genes (Basel), vol.8, issue.10, 2017.

C. Huang, Identify potential drugs for cardiovascular diseases caused by stressinduced genes in vascular smooth muscle cells, PeerJ, vol.4, p.2478, 2016.

J. Li, Gene expression profiling of CD133-positive cells in coronary artery disease, Mol Med Rep, vol.12, issue.5, pp.7512-7516, 2015.

F. Lang, Therapeutic Interference With Vascular Calcification-Lessons From Klotho-Hypomorphic Mice and Beyond, Front Endocrinol (Lausanne), vol.9, p.207, 2018.

C. C. Leslie, Cytosolic phospholipase A?: physiological function and role in disease, J. Lipid Res, vol.56, issue.8, pp.1386-1402, 2015.

G. S. Getz and C. A. Reardon, Animal models of atherosclerosis, Arterioscler. Thromb. Vasc. Biol, vol.32, issue.5, pp.1104-1115, 2012.

L. A. Trimble, NMR structural studies of the tight complex between a trifluoromethyl ketone inhibitor and the 85-kDa human phospholipase A2, Biochemistry, vol.32, issue.47, pp.12560-12565, 1993.

D. Riendeau, Arachidonyl trifluoromethyl ketone, a potent inhibitor of 85-kDa phospholipase A2, blocks production of arachidonate and 12-hydroxyeicosatetraenoic acid by calcium ionophore-challenged platelets, J. Biol. Chem, vol.269, issue.22, pp.15619-15624, 1994.

F. Bartoli, Tight binding inhibitors of 85-kDa phospholipase A2 but not 14-kDa phospholipase A2 inhibit release of free arachidonate in thrombin-stimulated human platelets, J. Biol. Chem, vol.269, issue.22, pp.15625-15630, 1994.

M. H. Gelb, M. K. Jain, and O. G. Berg, Inhibition of phospholipase A2, FASEB J, vol.8, issue.12, pp.916-924, 1994.

I. P. Street, Slow-and tight-binding inhibitors of the 85-kDa human phospholipase A2, Biochemistry, vol.32, issue.23, pp.5935-5940, 1993.

T. Luong, Fibulin-3 Attenuates Phosphate-Induced Vascular Smooth Muscle Cell Calcification by Inhibition of Oxidative Stress, Cell. Physiol. Biochem, vol.46, issue.4, pp.1305-1316, 2018.

J. Voelkl, Zinc Inhibits Phosphate-Induced Vascular Calcification through TNFAIP3-Mediated Suppression of NF-?B, J. Am. Soc. Nephrol, vol.29, issue.6, pp.1636-1648, 2018.

S. Chun, A High Phosphorus Diet Affects Lipid Metabolism in Rat Liver: A DNA Microarray Analysis, PLoS ONE, vol.11, issue.5, p.155386, 2016.

S. A. Steitz, Smooth muscle cell phenotypic transition associated with calcification: upregulation of Cbfa1 and downregulation of smooth muscle lineage markers, Circ. Res, vol.89, issue.12, pp.1147-1154, 2001.

P. Lanzer, Medial vascular calcification revisited: review and perspectives, Eur. Heart J, vol.35, issue.23, pp.1515-1525, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01384964

J. Voelkl, SGK1 induces vascular smooth muscle cell calcification through NF-?B signaling, J. Clin. Invest, vol.128, issue.7, pp.3024-3040, 2018.

R. S. Rosenson and E. Hurt-camejo, Phospholipase A2 enzymes and the risk of atherosclerosis, Eur. Heart J, vol.33, issue.23, pp.2899-2909, 2012.

M. G. Kokotou, D. Limnios, A. Nikolaou, A. Psarra, and G. Kokotos, Inhibitors of phospholipase A2 and their therapeutic potential: an update on patents (2012-2016), Expert Opin Ther Pat, vol.27, issue.2, pp.217-225, 2017.

L. S. Elinder, Expression of phospholipase A2 isoforms in human normal and atherosclerotic arterial wall, Arterioscler. Thromb. Vasc. Biol, vol.17, issue.10, pp.2257-2263, 1997.

J. Hartiala, Genetic contribution of the leukotriene pathway to coronary artery disease, Hum. Genet, vol.129, issue.6, pp.617-627, 2011.

H. J. Leis and W. Windischhofer, Inhibition of cyclooxygenases 1 and 2 by the phospholipaseblocker, arachidonyl trifluoromethyl ketone, Br. J. Pharmacol, vol.155, issue.5, pp.731-737, 2008.

M. Makridakis and A. Vlahou, GeLC-MS: A Sample Preparation Method for Proteomics Analysis of Minimal Amount of Tissue, Methods Mol. Biol, vol.1788, pp.165-175, 2018.

V. Lygirou, Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease, J Transl Med, vol.16, issue.1, p.104, 2018.

M. Han, Functional cooperation between vitamin D receptor and Runx2 in vitamin D-induced vascular calcification, PLoS ONE, vol.8, issue.12, p.83584, 2013.

I. Alesutan, Augmentation of phosphate-induced osteo-/chondrogenic transformation of vascular smooth muscle cells by homoarginine, Cardiovasc. Res, vol.110, issue.3, pp.408-418, 2016.

S. H. Zhang, R. L. Reddick, J. A. Piedrahita, and N. Maeda, Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E, Science, vol.258, issue.5081, pp.468-471, 1992.

A. S. Plump, Severe hypercholesterolemia and atherosclerosis in apolipoprotein Edeficient mice created by homologous recombination in ES cells, Cell, vol.71, issue.2, pp.343-353, 1992.

P. Lesnik, C. A. Haskell, and C. If, Decreased atherosclerosis in CX3CR1-/-mice reveals a role for fractalkine in atherogenesis, J. Clin. Invest, vol.111, issue.3, pp.333-340, 2003.

I. Alesutan, Inhibition of Phosphate-Induced Vascular Smooth Muscle Cell Osteo-/Chondrogenic Signaling and Calcification by Bafilomycin A1 and Methylamine, Kidney Blood Press. Res, vol.40, issue.5, pp.490-499, 2015.

I. Alesutan, Involvement Of Vascular Aldosterone Synthase In Phosphate-Induced Osteogenic Transformation Of Vascular Smooth Muscle Cells, Sci Rep, vol.7, issue.1, p.2059, 2017.

X. Liao, MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells, Endocrinology, vol.154, issue.9, pp.3344-3352, 2013.

W. Qiao, L. Chen, and M. Zhang, MicroRNA-205 regulates the calcification and osteoblastic differentiation of vascular smooth muscle cells, Cell. Physiol. Biochem, vol.33, issue.6, pp.1945-1953, 2014.

R. Villa-bellosta, A. Millan, and V. Sorribas, Role of calcium-phosphate deposition in vascular smooth muscle cell calcification, Am. J. Physiol, vol.300, issue.1, pp.210-220, 2011.

I. Alesutan, Inhibition of osteo/chondrogenic transformation of vascular smooth muscle cells by MgCl2 via calcium-sensing receptor, J. Hypertens, vol.35, issue.3, pp.523-532, 2017.

J. Voelkl, Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice, J. Clin. Invest, vol.123, issue.2, pp.812-822, 2013.

J. Voelkl, Up-regulation of hepatic alpha-2-HS-glycoprotein transcription by testosterone via androgen receptor activation, Cell. Physiol. Biochem, vol.33, issue.6, pp.1911-1920, 2014.

J. Voelkl, AMP-activated protein kinase ?1-sensitive activation of AP-1 in cardiomyocytes, J. Mol. Cell. Cardiol, vol.97, pp.36-43, 2016.

, Arithmetic means ± SEM of serum calcium, phosphorus, CaxPi product and FGF23 C-term concentrations in mice receiving vehicle (CTR) or high-dosed cholecalciferol (vD) without or with additional treatment with, p.3

, **(p<0.01), ***(p<0.001) statistically significant vs. control mice, vol.31, pp.172980-18530