J. K. Davis and K. Broadie, Multifarious functions of the fragile x mental retardation protein, Trends Genet, vol.33, pp.703-717, 2017.

C. T. Ashley, K. D. Wilkinson, D. Reines, and S. T. Warren, FMR1 protein: conserved RNP family domains and selective RNA binding, Science, vol.262, pp.563-569, 1993.

H. Siomi, M. C. Siomi, R. L. Nussbaum, and G. Dreyfuss, The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein, Cell, vol.74, pp.291-299, 1993.

J. C. Darnell, C. E. Fraser, O. Mostovetsky, G. Stefani, T. A. Jones et al., Kissing complex RNAs mediate interaction between the fragile-X mental retardation protein KH2 domain and brain polyribosomes, Genes Dev, vol.19, pp.903-921, 2005.

J. C. Darnell, K. B. Jensen, J. P. Brown, V. Warren, S. T. Darnell et al., Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function, Cell, vol.107, pp.489-99, 2001.

L. K. Myrick, H. Hashimoto, X. Cheng, and S. T. Warren, Human FMRP contains an integral tandem Agenet (tudor) and KH motif in the amino terminal domain, Hum Mol Genet, vol.24, pp.1733-1773, 2015.

Y. Hu, Z. Chen, Y. Fu, Q. He, L. Jiang et al., The aminoterminal structure of human fragile X mental retardation protein obtained using precipitant-immobilized imprinted polymers, Nat Commun, vol.6, p.6634, 2015.

R. Alpatov, B. J. Lesch, M. Nakamoto-kinoshita, A. Blanco, S. Chen et al., A chromatin-dependent role of the fragile X mental retardation protein FMRP in the DNA damage response, Cell, vol.157, pp.869-81, 2014.

Y. Feng, D. Absher, D. E. Eberhart, V. Brown, H. E. Malter et al., FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association, Mol Cell, vol.1, pp.109-127, 1997.

G. J. Bassell, Fragile balance: RNA editing tunes the synapse, Nat Neurosci, vol.14, pp.1492-1496, 2011.

J. C. Darnell and E. Klann, The translation of translational control by FMRP: therapeutic targets for FXS, Nat Neurosci, vol.16, pp.1530-1536, 2013.

J. C. Darnell, S. J. Van-driesche, C. Zhang, K. Y. Hung, A. Mele et al., FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism, Cell, vol.146, pp.247-61, 2011.

T. Maurin, K. Lebrigand, S. Castagnola, A. Paquet, M. Jarjat et al., HITS-CLIP in various brain areas reveals new targets and new modalities of RNA binding by fragile X mental retardation protein, Nucleic Acids Res, vol.46, pp.6344-55, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02407981

R. J. Hagerman, E. Berry-kravis, H. C. Hazlett, D. B. Bailey, H. Moine et al., Fragile X syndrome, Nat Rev Dis Prim, vol.3, p.17065, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01104162

I. Napoli, V. Mercaldo, P. P. Boyl, B. Eleuteri, F. Zalfa et al., The fragile X syndrome protein represses activitydependent translation through CYFIP1, a new 4E-BP, Cell, vol.134, pp.1042-54, 2008.

S. Ceman, W. T. O'donnell, M. Reed, S. Patton, J. Pohl et al., Phosphorylation influences the translation state of FMRPassociated polyribosomes, Hum Mol Genet, vol.12, pp.3295-305, 2003.

F. Zalfa, M. Giorgi, B. Primerano, A. Moro, D. Penta et al., The fragile X syndrome protein FMRP associates with BC1

, RNA and regulates the translation of specific mRNAs at synapses, Cell, vol.112, pp.317-344, 2003.

A. A. Caudy, M. Myers, G. J. Hannon, and S. M. Hammond, Fragile Xrelated protein and VIG associate with the RNA interference machinery, Genes Dev, vol.16, pp.2491-2497, 2002.

A. Ishizuka, M. C. Siomi, and H. Siomi, A drosophila fragile X protein interacts with components of RNAi and ribosomal proteins, Genes Dev, vol.16, pp.2497-508, 2002.

I. Plante, L. Davidovic, D. L. Ouellet, L. A. Gobeil, S. Tremblay et al., Dicer-derived microRNAs are utilized by the fragile X mental retardation protein for assembly on target RNAs, J Biomed Biotechnol, p.64347, 2006.

P. Jin, D. C. Zarnescu, S. Ceman, M. Nakamoto, J. Mowrey et al., Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway, Nat Neurosci, vol.7, pp.113-120, 2004.

D. Edbauer, J. R. Neilson, K. A. Foster, C. F. Wang, D. P. Seeburg et al., Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132, Neuron, vol.65, pp.373-84, 2010.

R. S. Muddashetty, V. C. Nalavadi, C. Gross, X. Yao, L. Xing et al., Reversible inhibition of PSD-95 mRNA translation by miR-125a, FMRP phosphorylation, and mGluR signaling, Mol Cell, vol.42, pp.673-88, 2011.

E. G. Bechara, M. C. Didiot, M. Melko, L. Davidovic, M. Bensaid et al., A novel function for fragile X mental retardation protein in translational activation, PLoS Biol, vol.7, p.16, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00357398

T. Maurin, M. Melko, S. Abekhoukh, O. Khalfallah, L. Davidovic et al., The FMRP/GRK4 mRNA interaction uncovers a new mode of binding of the fragile X mental retardation protein in cerebellum, Nucleic Acids Res, vol.43, pp.8540-50, 2015.

D. E. Eberhart, H. E. Malter, Y. Feng, and S. T. Warren, The fragile X mental retardation protein is a ribonucleoprotein containing both nuclear localization and nuclear export signals, Hum Mol Genet, vol.5, pp.1083-91, 1996.

B. Bardoni, A. Sittler, Y. Shen, and J. L. Mandel, Analysis of domains affecting intracellular localization of the FMRP protein, Neurobiol Dis, vol.4, pp.329-365, 1997.

Y. Feng, C. A. Gutekunst, D. E. Eberhart, H. Yi, S. T. Warren et al., Fragile X mental retardation protein: nucleocytoplasmic shuttling and association with somatodendritic ribosomes, J Neurosci, vol.17, pp.1539-1586, 1997.

S. Adinolfi, A. Ramos, S. R. Martin, D. Piaz, F. Pucci et al., The N-terminus of the fragile X mental retardation protein contains a novel domain involved in dimerization and RNA binding, Biochemistry, vol.42, pp.10437-10481, 2003.

E. Fernandez, N. Rajan, and C. Bagni, The FMRP regulon: from targets to disease convergence, Front Neurosci, vol.7, p.191, 2013.

M. C. Siomi, Y. Zhang, H. Siomi, and G. Dreyfuss, Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them, Mol Cell Biol, vol.16, pp.3825-3857, 1996.

F. Tamanini, L. Van-unen, C. Bakker, N. Sacchi, H. Galjaard et al., Oligomerization properties of fragile-X mentalretardation protein (FMRP) and the fragile-X-related proteins FXR1P and FXR2P, Biochem J, vol.343, pp.517-540, 1999.

B. Bardoni, A. Schenck, and J. L. Mandel, A novel RNA-binding nuclear protein that interacts with the fragile X mental retardation (FMR1) protein, Hum Mol Genet, vol.8, pp.2557-66, 1999.

B. Bardoni, M. Castets, M. E. Huot, A. Schenck, S. Adinolfi et al., 82-FIP, a novel FMRP (fragile X mental retardation protein) interacting protein, shows a cell cycle-dependent intracellular localization, Hum Mol Genet, vol.12, pp.1689-98, 2003.

A. Schenck, B. Bardoni, A. Moro, C. Bagni, and J. L. Mandel, A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P, Proc Natl Acad Sci USA, vol.98, pp.8844-8853, 2001.

B. Bardoni, A. Schenck, and J. L. Mandel, The fragile X mental retardation protein, Brain Res Bull, vol.56, pp.375-82, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00172130

L. Davidovic, X. H. Jaglin, A. M. Lepagnol-bestel, S. Tremblay, M. Simonneau et al., The fragile X mental retardation protein is a molecular adaptor between the neurospecific KIF3C kinesin and dendritic RNA granules, Hum Mol Genet, vol.16, pp.3047-58, 2007.

L. Ferron, M. Nieto-rostro, J. S. Cassidy, and A. C. Dolphin, Fragile X mental retardation protein controls synaptic vesicle exocytosis by modulating N-type calcium channel density, Nat Commun, vol.5, p.3628, 2014.

S. Castagnola, S. Delhaye, A. Folci, A. Paquet, F. Brau et al., New insights into the role of Cav2 protein family in calcium flux deregulation in Fmr1-KO neurons, Front Mol Neurosci, vol.11, p.342, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02443567

R. P. Menon, T. J. Gibson, and A. Pastore, The C terminus of fragile X mental retardation protein interacts with the multi-domain Ranbinding protein in the microtubule-organising centre, J Mol Biol, vol.343, pp.43-53, 2004.

L. Davidovic, E. Bechara, M. Gravel, X. H. Jaglin, S. Tremblay et al., The nuclear microspherule protein 58 is a novel RNAbinding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons, Hum Mol Genet, vol.15, pp.1525-1563, 2006.

A. J. Verkerk, M. Pieretti, J. S. Sutcliffe, Y. H. Fu, D. P. Kuhl et al., Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome, Cell, vol.65, pp.905-919, 1991.

R. D. Rudelli, W. T. Brown, K. Wisniewski, E. C. Jenkins, M. Laure-kamionowska et al., Adult fragile X syndrome. Clinico-neuropathologic findings, Acta Neuropathol, vol.67, pp.289-95, 1985.

V. J. Hinton, W. T. Brown, K. Wisniewski, and R. D. Rudelli, Analysis of neocortex in three males with the fragile X syndrome, Am J Med Genet, vol.41, pp.289-94, 1991.

S. A. Irwin, B. Patel, M. Idupulapati, J. B. Harris, R. A. Crisostomo et al., Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination, Am J Med Genet, vol.98, pp.161-168, 2001.

Z. Yan, E. Kim, D. Datta, D. A. Lewis, and S. H. Soderling, Synaptic actin dysregulation, a convergent mechanism of mental disorders?, J Neurosci, vol.36, pp.11411-11418, 2016.

A. W. Grossman, N. M. Elisseou, B. C. Mckinney, and W. T. Greenough, Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines, Brain Res, vol.1084, pp.158-64, 2006.

C. E. Bakker, Fmr1 knockout mice: a model to study fragile X mental retardation. The Dutch-Belgian fragile X consortium, Cell, vol.78, pp.23-33, 1994.

E. J. Mientjes, I. Nieuwenhuizen, L. Kirkpatrick, T. Zu, M. Hoogeveen-westerveld et al., The generation of a conditional Fmr1 knock out mouse model to study Fmrp function in vivo, Neurobiol Dis, vol.21, pp.549-55, 2006.

K. M. Huber, S. M. Gallagher, S. T. Warren, and M. F. Bear, Altered synaptic plasticity in a mouse model of fragile X mental retardation, Proc Natl Acad Sci USA, vol.99, pp.7746-50, 2002.

M. F. Bear, K. M. Huber, and S. T. Warren, The mGluR theory of fragile X mental retardation, Trends Neurosci, vol.27, pp.370-377, 2004.

A. S. Venne, L. Kollipara, and R. P. Zahedi, The next level of complexity: crosstalk of posttranslational modifications, Proteomics, vol.14, pp.513-537, 2014.

A. M. Bode and Z. Dong, Post-translational modification of p53 in tumorigenesis, Nat Rev Cancer, vol.4, pp.793-805, 2004.

L. Martin, X. Latypova, and F. Terro, Post-translational modifications of tau protein: implications for Alzheimer's disease, Neurochem Int, vol.58, pp.458-71, 2011.

H. Xu, Y. Wang, S. Lin, W. Deng, D. Peng et al., PTMD: a database of human disease-associated post-translational modifications, Genomics, Proteom Bioinform, vol.16, pp.244-51, 2018.

S. C. Junqueira, E. Centeno, K. A. Wilkinson, and H. Cimarosti, Posttranslational modifications of Parkinson's disease-related proteins: phosphorylation, sumoylation and ubiquitination, Biochim Biophys Acta Mol Basis Dis, vol.1865, pp.2001-2008, 2019.

M. C. Siomi, K. Higashijima, A. Ishizuka, and H. Siomi, Casein kinase II phosphorylates the fragile X mental retardation protein and modulates its biological properties, Mol Cell Biol, vol.22, pp.8438-8485, 2002.

L. Hou, M. D. Antion, D. Hu, C. M. Spencer, R. Paylor et al., Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression, Neuron, vol.51, pp.441-54, 2006.

A. Stetler, C. Winograd, J. Sayegh, A. Cheever, E. Patton et al., Identification and characterization of the methyl arginines in the fragile X mental retardation protein Fmrp, Hum Mol Genet, vol.15, pp.87-96, 2006.

A. Khayachi, C. Gwizdek, G. Poupon, D. Alcor, M. Chafai et al., Sumoylation regulates FMRP-mediated dendritic spine elimination and maturation, Nat Commun, vol.9, p.757, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02443557

K. M. Huber, J. C. Roder, and M. F. Bear, Chemical induction of mGluR5-and protein synthesis-dependent long-term depression in hippocampal area CA1, J Neurophysiol, vol.86, pp.321-326, 2001.

J. M. Henley, E. A. Barker, and O. O. Glebov, Routes, destinations and delays: recent advances in AMPA receptor trafficking, Trends Neurosci, vol.34, pp.258-68, 2011.

T. E. Chater and Y. Goda, The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity, Front Cell Neurosci, vol.8, p.401, 2014.

K. M. Huber, M. S. Kayser, and M. F. Bear, Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression, Science, vol.288, pp.1254-1261, 2000.

I. J. Weiler, S. A. Irwin, A. Y. Klintsova, C. M. Spencer, A. D. Brazelton et al., Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation, Proc Natl Acad Sci USA, vol.94, pp.5395-400, 1997.

L. N. Antar, R. Afroz, J. B. Dictenberg, R. C. Carroll, and G. J. Bassell, Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses, J Neurosci, vol.24, pp.2648-55, 2004.

P. K. Todd, J. S. Malter, and K. J. Mack, Whisker stimulation-dependent translation of FMRP in the barrel cortex requires activation of type I metabotropic glutamate receptors, Brain Res Mol Brain Res, vol.110, pp.267-78, 2003.

W. Zhao, S. C. Chuang, R. Bianchi, and R. K. Wong, Dual regulation of fragile X mental retardation protein by group I metabotropic glutamate receptors controls translation-dependent epileptogenesis in the hippocampus, J Neurosci, vol.31, pp.725-759, 2011.

J. Huang, Y. Ikeuchi, M. Malumbres, and A. Bonni, A Cdh1-APC/ FMRP ubiquitin signaling link drives mGluR-dependent synaptic plasticity in the mammalian brain, Neuron, vol.86, pp.726-765, 2015.

R. Mazroui, M. E. Huot, S. Tremblay, N. Boilard, Y. Labelle et al., Fragile X mental retardation protein determinants required for its association with polyribosomal mRNPs, Hum Mol Genet, vol.12, pp.3087-96, 2003.

U. Narayanan, V. Nalavadi, M. Nakamoto, D. C. Pallas, S. Ceman et al., FMRP phosphorylation reveals an immediateearly signaling pathway triggered by group I mGluR and mediated by PP2A, J Neurosci, vol.27, pp.14349-57, 2007.

F. Niere, J. R. Wilkerson, and K. M. Huber, Evidence for a fragile X mental retardation protein-mediated translational switch in metabotropic glutamate receptor-triggered Arc translation and long-term depression, J Neurosci, vol.72, pp.5924-5960, 2012.

X. Wang, Y. Mu, M. Sun, and J. Han, Bidirectional regulation of fragile X mental retardation protein phosphorylation controls rhodopsin homoeostasis, J Mol Cell Biol, vol.9, pp.104-120, 2017.

U. Narayanan, V. Nalavadi, M. Nakamoto, G. Thomas, S. Ceman et al., S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade, J Biol Chem, vol.283, pp.18478-82, 2008.

I. Novak-hofer and G. Thomas, Epidermal growth factor-mediated activation of an S6 kinase in Swiss mouse 3T3 cells, J Biol Chem, vol.260, pp.10314-10323, 1985.

M. J. Van-kanegan, D. G. Adams, B. E. Wadzinski, and S. Strack, Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and Akt, J Biol Chem, vol.280, pp.36029-36065, 2005.

P. Curatolo, R. Bombardieri, and S. Jozwiak, Tuberous sclerosis, Lancet, vol.372, pp.657-68, 2008.

C. M. Bartley, R. A. O'keefe, and A. Bordey, FMRP S499 is phosphorylated independent of mTORC1-S6K1 activity, PLoS ONE, vol.9, p.96956, 2014.

C. M. Bartley, R. A. O'keefe, A. Blice-baum, M. R. Mihailescu, X. Gong et al., Mammalian FMRP S499 is phosphorylated by CK2 and promotes secondary phosphorylation of, FMRP. eNeuro, vol.3, pp.1-16, 2016.

M. Ruzzene, D. Maira, G. Tosoni, K. Pinna, and L. A. , Assessment of CK2 constitutive activity in cancer cells, Methods Enzymol, vol.484, pp.495-514, 2010.

N. St-denis, M. Gabriel, J. P. Turowec, G. B. Gloor, S. S. Li et al., Systematic investigation of hierarchical phosphorylation by protein kinase CK2, J Proteom, vol.118, pp.49-62, 2015.

A. Cheever and S. Ceman, Phosphorylation of FMRP inhibits association with Dicer, RNA, vol.15, pp.362-368, 2009.

S. E. Zimmer, S. G. Doll, A. Garcia, and M. R. Akins, Splice formdependent regulation of axonal arbor complexity by FMRP, Dev Neurobiol, vol.77, pp.738-52, 2017.

R. L. Coffee, A. J. Williamson, C. M. Adkins, M. C. Gray, T. L. Page et al., In vivo neuronal function of the fragile X mental retardation protein is regulated by phosphorylation, Hum Mol Genet, vol.21, pp.900-915, 2012.

V. C. Nalavadi, R. S. Muddashetty, C. Gross, and G. J. Bassell, Dephosphorylation-induced ubiquitination and degradation of FMRP in dendrites: a role in immediate early mGluR-stimulated translation, J Neurosci, vol.32, pp.2582-2589, 2012.

X. Y. Zhang, J. Qi, Y. Q. Shen, X. Liu, A. Liu et al., Mutations of PQBP1 in Renpenning syndrome promote ubiquitin-mediated degradation of FMRP and cause synaptic dysfunction, Hum Mol Genet, vol.26, pp.955-68, 2017.

Y. N. Choi, D. H. Jeong, J. S. Lee, and S. J. Yoo, Regulation of fragile X mental retardation 1 protein by C-terminus of Hsc70-interacting protein depends on its phosphorylation status, Biochem Biophys Res Commun, vol.453, pp.192-199, 2014.

C. Loriol, J. Parisot, G. Poupon, C. Gwizdek, and S. Martin, Developmental regulation and spatiotemporal redistribution of the sumoylation machinery in the rat central nervous system, PLoS ONE, vol.7, p.33757, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00855016

C. Loriol, A. Khayachi, G. Poupon, C. Gwizdek, and S. Martin, Activity-dependent regulation of the sumoylation machinery in rat hippocampal neurons, Biol Cell, vol.105, pp.30-45, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00855030

L. Schorova, M. Pronot, G. Poupon, M. Prieto, A. Folci et al., The synaptic balance between sumoylation and desumoylation is maintained by the activation of metabotropic mGlu5 receptors, Cell Mol Life Sci, vol.76, pp.3019-3050, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02408725

C. Gwizdek, F. Casse, and S. Martin, Protein sumoylation in brain development, neuronal morphology and spinogenesis, Neuromolecular Med, vol.15, pp.677-91, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00855033

L. Schorova and S. Martin, Sumoylation in synaptic function and dysfunction, Front Synaptic Neurosci, vol.8, p.9, 2016.

J. M. Henley, R. E. Carmichael, and K. A. Wilkinson, Extranuclear sumoylation in neurons, Trends Neurosci, vol.41, pp.198-210, 2018.

C. Loriol, F. Casse, A. Khayachi, G. Poupon, M. Chafai et al., mGlu5 receptors regulate synaptic sumoylation via a transient PKC-dependent diffusional trapping of Ubc9 into spines, Nat Commun, vol.5, p.5113, 2014.

M. T. Bedford and S. G. Clarke, Protein arginine methylation in mammals: who, what, and why, Mol Cell, vol.33, pp.1-13, 2009.

R. S. Blanc and S. Richard, Arginine methylation: the coming of age, Mol Cell, vol.65, pp.8-24, 2017.

J. Huang, G. Vogel, Z. Yu, G. Almazan, and S. Richard, Type II arginine methyltransferase PRMT5 regulates gene expression of inhibitors of differentiation/DNA binding Id2 and Id4 during glial cell differentiation, J Biol Chem, vol.286, pp.44424-44456, 2011.

S. S. Dhar, S. H. Lee, P. Y. Kan, P. Voigt, L. Ma et al., Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4, Genes Dev, vol.26, pp.2749-62, 2012.

Z. Simandi, E. Czipa, A. Horvath, A. Koszeghy, C. Bordas et al., PRMT1 and PRMT8 regulate retinoic acid-dependent neuronal differentiation with implications to neuropathology, Stem Cells, vol.33, pp.726-767, 2015.

M. Hashimoto, K. Murata, J. Ishida, A. Kanou, and Y. Kasuya, Fukamizu A. Severe hypomyelination and developmental defects are caused in mice lacking protein arginine methyltransferase 1 (PRMT1) in the central nervous system, J Biol Chem, vol.291, pp.2237-2282, 2016.

A. Scaglione, J. Patzig, J. Liang, R. Frawley, J. Bok et al., PRMT5-mediated regulation of developmental myelination, Nat Commun, vol.9, p.2840, 2018.

Q. Liu and G. Dreyfuss, In vivo and in vitro arginine methylation of RNA-binding proteins, Mol Cell Biol, vol.15, pp.2800-2808, 1995.

L. S. Ai, C. H. Lin, M. Hsieh, and C. Li, Arginine methylation of a glycine and arginine rich peptide derived from sequences of human FMRP and fibrillarin, Proc Natl Sci Counc, vol.23, pp.175-80, 1999.

N. Dolzhanskaya, G. Merz, and R. B. Denman, Alternative splicing modulates protein arginine methyltransferase-dependent methylation of fragile X syndrome mental retardation protein, Biochemistry, vol.45, pp.10385-93, 2006.

E. Blackwell, X. Zhang, and S. Ceman, Arginines of the RGG box regulate FMRP association with polyribosomes and mRNA, Hum Mol Genet, vol.19, pp.1314-1337, 2010.

R. B. Denman, Methylation of the arginine-glycine-rich region in the fragile X mental retardation protein FMRP differentially affects RNA binding, Cell Mol Biol Lett, vol.7, pp.877-83, 2002.

N. Dolzhanskaya, G. Merz, J. M. Aletta, and R. B. Denman, Methylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP, J Cell Sci, vol.119, pp.1933-1979, 2006.

R. B. Denman, N. Dolzhanskaya, and Y. J. Sung, Regulating a translational regulator: mechanisms cells use to control the activity of the fragile X mental retardation protein, Cell Mol Life Sci, vol.61, pp.1714-1742, 2004.

R. B. Denman, W. Xie, G. Merz, and Y. J. Sung, GABAAergic stimulation modulates intracellular protein arginine methylation, Neurosci Lett, vol.572, pp.38-43, 2014.

J. L. Olmos-serrano, S. M. Paluszkiewicz, B. S. Martin, W. E. Kaufmann, J. G. Corbin et al., Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome, J Neurosci, vol.30, pp.9929-9967, 2010.

N. Dolzhanskaya, D. C. Bolton, and R. B. Denman, Chemical and structural probing of the N-terminal residues encoded by FMR1 exon 15 and their effect on downstream arginine methylation, Biochemistry, vol.47, pp.8491-503, 2008.

B. Tsang, J. Arsenault, R. M. Vernon, H. Lin, N. Sonenberg et al., Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation, Proc Natl Acad Sci, vol.116, pp.4218-4245, 2019.

J. Zhang, X. Li, and J. D. Li, The roles of post-translational modifications on alpha-synuclein in the pathogenesis of Parkinson's diseases, Front Neurosci, vol.13, p.381, 2019.

K. G. Monaghan, E. Lyon, and E. B. Spector, ACMG standards and guidelines for fragile X testing: a revision to the disease-specific supplements to the standards and guidelines for clinical genetics laboratories of the American College of Medical Genetics and Genomics, Genet Med, vol.15, pp.575-86, 2013.

S. C. Collins, S. M. Bray, J. A. Suhl, D. J. Cutler, B. Coffee et al., Identification of novel FMR1 variants by massively parallel sequencing in developmentally delayed males, Am J Med Genet A, vol.152, pp.2512-2532, 2010.

S. C. Collins, B. Coffee, P. J. Benke, E. Berry-kravis, F. Gilbert et al., Array-based FMR1 sequencing and deletion analysis in patients with a fragile X syndrome-like phenotype, PLoS ONE, vol.5, p.9476, 2010.

A. F. Sitzmann, R. T. Hagelstrom, F. Tassone, R. J. Hagerman, and M. G. Butler, Rare FMR1 gene mutations causing fragile X syndrome: a review, Am J Med Genet A, vol.176, pp.11-19, 2018.

A. Quartier, H. Poquet, B. Gilbert-dussardier, M. Rossi, A. S. Casteleyn et al., Intragenic FMR1 disease-causing variants: a significant mutational mechanism leading to fragile-X syndrome, Eur J Hum Genet, vol.25, pp.423-454, 2017.

K. De-boulle, A. J. Verkerk, E. Reyniers, L. Vits, J. Hendrickx et al., A point mutation in the FMR-1 gene associated with fragile X mental retardation, Nat Genet, vol.3, pp.31-36, 1993.

J. B. Zang, E. D. Nosyreva, C. M. Spencer, L. J. Volk, K. Musunuru et al., A mouse model of the human fragile X syndrome I304N mutation, PLoS Genet, vol.5, p.1000758, 2009.

L. K. Myrick, M. Nakamoto-kinoshita, N. M. Lindor, S. Kirmani, X. Cheng et al., Fragile X syndrome due to a missense mutation, Eur J Hum Genet, vol.22, pp.1185-1194, 2014.

L. K. Myrick, P. Y. Deng, H. Hashimoto, Y. M. Oh, Y. Cho et al., Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures, Proc Natl Acad Sci, vol.112, pp.949-56, 2015.

M. Handt, A. Epplen, S. Hoffjan, K. Mese, J. T. Epplen et al., Point mutation frequency in the FMR1 gene as revealed by fragile X syndrome screening, Mol Cell Probes, vol.28, pp.279-83, 2014.

P. C. Patsalis, C. Sismani, J. A. Hettinger, I. Boumba, I. Georgiou et al., Molecular screening of fragile X (FRAXA) and FRAXE mental retardation syndromes in the Hellenic population of Greece and Cyprus: incidence, genetic variation, and stability, Am J Med Genet, vol.84, pp.184-90, 1999.

S. Hecimovic, I. P. Tarnik, I. Baric, Z. Cakarun, and K. Pavelic, Screening for fragile X syndrome: results from a school for mentally retarded children, Acta Paediatr, vol.91, pp.535-544, 2002.

T. Major, B. Culjkovic, O. Stojkovic, M. Gucscekic, A. Lakic et al., Prevalence of the fragile X syndrome in Yugoslav patients with non-specific mental retardation, J Neurogenet, vol.17, pp.223-253, 2003.

V. Biancalana, C. Beldjord, A. Taillandier, S. Szpiro-tapia, V. Cusin et al., Five years of molecular diagnosis of Fragile X syndrome (1997-2001): a collaborative study reporting 95% of the activity in France, Am J Med Genet A, vol.129, pp.218-242, 2004.

J. Diaz, C. Scheiner, and L. E. , Presentation of a recurrent FMR1 missense mutation (R138Q) in an affected female, Transl Sci Rare Dis, vol.3, pp.139-183, 2018.

F. Sethna, C. Moon, and H. Wang, From FMRP function to potential therapies for fragile X syndrome, Neurochem Res, vol.39, pp.1016-1047, 2014.

C. Gross, A. Hoffmann, G. J. Bassell, and E. M. Berry-kravis, Therapeutic strategies in fragile X syndrome: from bench to bedside and back, Neurotherapeutics, vol.12, pp.584-608, 2015.

S. Castagnola, B. Bardoni, and T. Maurin, The search for an effective therapy to treat fragile X syndrome: dream or reality? Front Synaptic Neurosci, vol.9, p.15, 2017.

C. Gallego-iradi, J. S. Bickford, S. Khare, A. Hall, J. A. Nick et al., KCNC3(R420H), a K(+) channel mutation causative in spinocerebellar ataxia 13 displays aberrant intracellular trafficking, Neurobiol Dis, vol.71, pp.270-279, 2014.

H. Siomi, M. Choi, M. C. Siomi, R. L. Nussbaum, and G. Dreyfuss, Essential role for KH domains in RNA binding: impaired RNA binding by a mutation in the KH domain of FMR1 that causes fragile X syndrome, Cell, vol.77, pp.33-42, 1994.

B. Laggerbauer, D. Ostareck, E. M. Keidel, A. Ostareck-lederer, and U. Fischer, Evidence that fragile X mental retardation protein is a negative regulator of translation, Hum Mol Genet, vol.10, pp.329-367, 2001.

A. Ramos, D. Hollingworth, and A. Pastore, The role of a clinically important mutation in the fold and RNA-binding properties of KH motifs, RNA, vol.9, pp.293-301, 2003.

S. M. Hearst, Q. Shao, M. Lopez, D. Raucher, and P. J. Vig, The design and delivery of a PKA inhibitory polypeptide to treat SCA1, J Neurochem, vol.131, pp.101-115, 2014.

H. K. Chen, P. Fernandez-funez, S. F. Acevedo, Y. C. Lam, M. D. Kaytor et al., Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1, Cell, vol.113, pp.457-68, 2003.

N. D. Jorgensen, J. M. Andresen, S. Lagalwar, B. Armstrong, S. Stevens et al., Phosphorylation of ATXN1 at Ser776 in the cerebellum, J Neurochem, vol.110, pp.675-86, 2009.

L. T. Tang, T. J. Craig, and J. M. Henley, SUMOylation of synapsin Ia maintains synaptic vesicle availability and is reduced in an autism mutation, Nat Commun, vol.6, p.7728, 2015.

D. J. Tai, Y. C. Liu, W. L. Hsu, Y. L. Ma, S. J. Cheng et al., MeCP2 SUMOylation rescues Mecp2-mutant-induced behavioural deficits in a mouse model of Rett syndrome, Nat Commun, vol.7, p.10552, 2016.

J. S. Seeler and A. Dejean, SUMO and the robustness of cancer, Nat Rev Cancer, vol.17, pp.184-97, 2017.

D. B. Anderson, C. A. Zanella, J. M. Henley, and H. Cimarosti, Sumoylation: implications for neurodegenerative diseases, Adv Exp Med Biol, vol.963, pp.261-81, 2017.

L. Zhang, T. H. Yang, and D. W. Li, Roles of sumoylation in heart development and cardiovascular diseases, Curr Mol Med, vol.16, pp.877-84, 2017.

Y. Yang, Z. Xia, X. Wang, X. Zhao, Z. Sheng et al., Smallmolecule inhibitors targeting protein sumoylation as novel anticancer compounds, Mol Pharm, vol.94, pp.885-94, 2018.

C. Kho, A. Lee, D. Jeong, J. G. Oh, P. A. Gorski et al., Smallmolecule activation of SERCA2a SUMOylation for the treatment of heart failure, Nat Commun, vol.6, p.7229, 2015.

J. D. Bernstock, D. G. Ye, Y. J. Lee, F. Gessler, G. K. Friedman et al., Drugging sumoylation for neuroprotection and oncotherapy, Neural Regen Res, vol.13, pp.415-421, 2018.

G. Garcia-manero, Y. Abaza, K. Takahashi, B. C. Medeiros, M. Arellano et al., Pracinostat plus azacitidine in older patients with newly diagnosed acute myeloid leukemia: results of a phase 2 study, Blood Adv, vol.3, pp.508-526, 2019.

M. Brave, R. Dagher, A. Farrell, S. Abraham, R. Ramchandani et al., Topotecan in combination with cisplatin for the treatment of stage IVB, recurrent, or persistent cervical cancer, Oncology, vol.20, pp.1415-1421, 1410.

Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond, Nat Rev Cancer, vol.6, pp.789-802, 2006.

J. D. Bernstock, Y. J. Lee, L. Peruzzotti-jametti, N. Southall, K. R. Johnson et al., A novel quantitative high-throughput screen identifies drugs that both activate SUMO conjugation via the inhibition of microRNAs 182 and 183 and facilitate neuroprotection in a model of oxygen and glucose deprivation, J Cereb Blood Flow Metab, vol.36, pp.426-467, 2016.

A. Kumar and K. Y. Zhang, Advances in the development of SUMO specific protease (SENP) inhibitors, Comput Struct Biotechnol J, vol.13, pp.204-215, 2015.

W. Yang, H. Sheng, and H. Wang, Targeting the SUMO pathway for neuroprotection in brain ischaemia, Stroke Vasc Neurol, vol.1, pp.101-108, 2016.

I. Fukuda, A. Ito, G. Hirai, S. Nishimura, H. Kawasaki et al., Ginkgolic acid inhibits protein sumoylation by blocking formation of the E1-SUMO intermediate, Chem Biol, vol.16, pp.133-173, 2009.

I. Fukuda, A. Ito, M. Uramoto, H. Saitoh, H. Kawasaki et al., Kerriamycin B inhibits protein sumoylation, J Antibiot, vol.62, pp.221-225, 2009.

M. Takemoto, Y. Kawamura, M. Hirohama, Y. Yamaguchi, H. Handa et al., Inhibition of protein sumoylation by davidiin, an ellagitannin from Davidia involucrata, J Antibiot, vol.67, pp.335-343, 2014.

Y. S. Kim, K. Nagy, S. Keyser, and J. S. Schneekloth, An electrophoretic mobility shift assay identifies a mechanistically unique inhibitor of protein sumoylation, Chem Biol, vol.20, pp.604-617, 2013.

K. Zlotkowski, W. M. Hewitt, R. S. Sinniah, J. E. Tropea, D. Needle et al., A small-molecule microarray approach for the identification of E2 enzyme inhibitors in ubiquitin-like conjugation pathways, vol.22, pp.760-766, 2017.

J. D. Bernstock, D. Ye, F. A. Gessler, Y. J. Lee, L. Peruzzotti-jametti et al., Topotecan is a potent inhibitor of sumoylation in glioblastoma multiforme and alters both cellular replication and metabolic programming, Sci Rep, vol.7, p.7425, 2017.

R. C. Kane, P. F. Bross, A. T. Farrell, and R. Pazdur, Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy, Oncologist, vol.8, pp.508-521, 2003.

S. H. Fatemi and T. D. Folsom, Dysregulation of fragile x mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study, Mol Autism, vol.2, issue.6, 2011.

O. G. Rustan, T. D. Folsom, M. K. Yousefi, and S. H. Fatemi, Phosphorylated fragile X mental retardation protein at serine 499, is reduced in cerebellar vermis and superior frontal cortex of subjects with autism: implications for fragile X mental retardation protein-metabotropic glutamate receptor 5 signaling, Mol Autism, vol.4, p.41, 2013.

T. G. Lohith, E. K. Osterweil, M. Fujita, K. J. Jenko, M. F. Bear et al., Is metabotropic glutamate receptor 5 upregulated in prefrontal cortex in fragile X syndrome?, Mol Autism, vol.4, p.15, 2013.

S. H. Fatemi, T. D. Folsom, R. E. Kneeland, and S. B. Liesch, Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism, Anat Rec (Hoboken), vol.294, pp.1635-1680, 2011.

J. A. Bourgeois, S. M. Coffey, S. M. Rivera, D. Hessl, L. W. Gane et al., A review of fragile X premutation disorders: expanding the psychiatric perspective, J Clin Psychiatry, vol.70, pp.852-62, 2009.

S. H. Fatemi, R. E. Kneeland, S. B. Liesch, and T. D. Folsom, Fragile X mental retardation protein levels are decreased in major psychiatric disorders, Schizophr Res, vol.124, pp.246-253, 2010.

O. Kelemen, T. Kovacs, and S. Keri, Contrast, motion, perceptual integration, and neurocognition in schizophrenia: the role of fragile-X related mechanisms, Prog Neuropsychopharmacol Biol Psychiatry, vol.46, pp.92-97, 2013.

T. Kovacs, O. Kelemen, and S. Keri, Decreased fragile X mental retardation protein (FMRP) is associated with lower IQ and earlier illness onset in patients with schizophrenia, Psychiatry Res, vol.210, pp.690-693, 2013.