K. Himmelmann, G. Hagberg, and P. Uvebrant, The changing panorama of cerebral palsy in Sweden. X. Prevalence and origin in the birth-year period 1999-2002, Acta Paediatr, vol.99, pp.1337-1343, 2010.

N. Paneth, T. Hong, and S. Korzeniewski, The descriptive epidemiology of cerebral palsy, Clin Perinatol, vol.33, pp.251-267, 2006.

K. Himmelmann, G. Hagberg, E. Beckung, B. Hagberg, and P. Uvebrant, The changing panorama of cerebral palsy in Sweden. IX. Prevalence and origin in the birth-year period 1995-1998, Acta Paediatr, vol.94, pp.287-294, 2005.

O. Hennebert, S. Marret, P. Carmeliet, P. Gressens, and A. Laquerriere, Role of tissue-derived plasminogen activator (t-PA) in an excitotoxic mouse model of neonatal white matter lesions, J Neuropathol Exp Neurol, vol.63, pp.53-63, 2004.

F. Adhami, D. Yu, W. Yin, A. Schloemer, and K. A. Burns, Deleterious effects of plasminogen activators in neonatal cerebral hypoxia-ischemia, Am J Pathol, vol.172, pp.1704-1716, 2008.

P. Leroux, O. Hennebert, H. Legros, V. Laudenbach, and P. Carmeliet, Role of tissue-plasminogen activator (t-PA) in a mouse model of neonatal white matter lesions: Interaction with plasmin inhibitors and anti-inflammatory drugs, Neuroscience, vol.146, pp.670-678, 2007.

E. Candelario-jalil, Y. Yang, and G. A. Rosenberg, Diverse roles of matrix metalloproteinases and tissue inhibitors of metalloproteinases in neuroinflammation and cerebral ischemia, Neuroscience, vol.158, pp.983-994, 2009.

A. T. Bauer, H. F. Burgers, T. Rabie, and H. H. Marti, Matrix metalloproteinase-9 mediates hypoxia-induced vascular leakage in the brain via tight junction rearrangement, J Cereb Blood Flow Metab, vol.30, pp.837-848, 2010.

S. Fukuda, C. A. Fini, T. Mabuchi, J. A. Koziol, and E. Lljr, Focal cerebral ischemia induces active proteases that degrade microvascular matrix, Stroke, vol.35, pp.998-1004, 2004.

A. Morancho, A. Rosell, L. Garcia-bonilla, and J. Montaner, Metalloproteinase and stroke infarct size: role for anti-inflammatory treatment?, Ann N Y Acad Sci, vol.1207, pp.123-133, 2010.

A. Rosell, E. Cuadrado, A. Ortega-aznar, M. Hernandez-guillamon, and E. H. Lo, MMP-9-positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke, Stroke, vol.39, pp.1121-1126, 2008.

N. Bednarek, P. Svedin, R. Garnotel, G. Favrais, and G. Loron, Increased MMP-9 and TIMP-1 in mouse neonatal brain and plasma and in human neonatal plasma after hypoxia-ischemia: a potential marker of neonatal encephalopathy, Pediatr Res, vol.71, pp.63-70, 2012.

W. Chen, R. Hartman, R. Ayer, S. Marcantonio, and J. Kamper, Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain, J Neurochem, vol.111, pp.726-736, 2009.

D. B. Gould, F. C. Phalan, G. J. Breedveld, S. E. Van-mil, and R. S. Smith, Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly, Science, vol.308, pp.1167-1171, 2005.

A. M. Buchan, P. A. Barber, N. Newcommon, H. G. Karbalai, and A. M. Demchuk, Effectiveness of t-PA in acute ischemic stroke: outcome relates to appropriateness, Neurology, vol.54, pp.679-684, 2000.

G. A. Christoforidis, A. P. Slivka, C. Karakasis, Y. Mohammad, and B. Avutu, Hemorrhage rates and outcomes when using up to 100 mg intra-arterial t-PA for thrombolysis in acute ischemic stroke, Interv Neuroradiol, vol.16, pp.297-305, 2010.

J. Tang, Y. J. Li, Q. Li, J. Mu, and D. Y. Yang, Endogenous tissue plasminogen activator increases hemorrhagic transformation induced by heparin after ischemia reperfusion in rat brains, Neurol Res, vol.32, pp.541-546, 2010.

J. Montaner, C. A. Molina, J. Monasterio, S. Abilleira, and J. F. Arenillas, Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke, Circulation, vol.107, pp.598-603, 2003.

T. Aoki, T. Sumii, T. Mori, X. Wang, and E. H. Lo, Blood-brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats, Stroke, vol.33, pp.2711-2717, 2002.

K. Tsuji, T. Aoki, E. Tejima, K. Arai, and S. R. Lee, Tissue plasminogen activator promotes matrix metalloproteinase-9 upregulation after focal cerebral ischemia, Stroke, vol.36, pp.1954-1959, 2005.

M. Ning, K. L. Furie, W. J. Koroshetz, H. Lee, and M. Barron, Association between tPA therapy and raised early matrix metalloproteinase-9 in acute stroke, Neurology, vol.66, pp.1550-1555, 2006.

S. R. Parathath, S. Parathath, and S. E. Tsirka, Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice, J Cell Sci, vol.119, pp.339-349, 2006.

P. Carmeliet, L. Kieckens, L. Schoonjans, B. Ream, and A. Van-nuffelen, Plasminogen activator inhibitor-1 deficient mice, I: generation by homologous recombination and characterization, J Clin Invest, vol.92, pp.2746-2755, 1993.

P. Carmeliet, L. Schoonjans, L. Kieckens, B. Ream, and J. Degen, Physiological consequences of loss of plasminogen activator gene function in mice, Nature, vol.368, pp.419-424, 1994.

J. E. Rice, R. C. Vannucci, and J. B. Brierley, The influence of immaturity on hypoxic-ischemic brain damage in the rat, Ann Neurol, vol.9, pp.131-141, 1981.

S. Marret, R. Mukendi, J. F. Gadisseux, P. Gressens, and P. Evrard, Effect of ibotenate on brain development : an excitotoxic mouse model of microgyria and posthypoxic-like lesions, J Neuropathol Exp Neurol, vol.54, pp.358-370, 1995.

G. Paxinos, G. Halliday, C. S. Watson, Y. Koutcherov, and H. Q. Wang, Atlas of the developing mouse brain at E17.5, P0, and P6, vol.374, 2007.

O. Hennebert, V. Laudenbach, A. Laquerrière, C. Verney, and P. Carmeliet, Ontogenic study of the influence of tissue plasminogen activator (t-PA) in neonatal excitotoxic brain insult and the subsequent microglia/macrophage activation, Neuroscience, vol.130, pp.697-712, 2005.

N. Bednarek, Y. Clement, V. Lelievre, P. Olivier, and G. Loron, Ontogeny of MMPs and TIMPs in the murine neocortex, Pediatr Res, vol.65, pp.296-300, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00396995

S. M. Agrawal, L. Lau, and V. W. Yong, MMPs in the central nervous system: where the good guys go bad, Semin Cell Dev Biol, vol.19, pp.42-51, 2008.

A. E. Ayoub, T. Q. Cai, R. A. Kaplan, and J. Luo, Developmental expression of matrix metalloproteinases 2 and 9 and their potential role in the histogenesis of the cerebellar cortex, J Comp Neurol, vol.481, pp.403-415, 2005.

B. Q. Zhao, Y. Ikeda, H. Ihara, T. Urano, and W. Fan, Essential role of endogenous tissue plasminogen activator through matrix metalloproteinase 9 induction and expression on heparin-produced cerebral hemorrhage after cerebral ischemia in mice, Blood, vol.103, pp.2610-2616, 2004.

C. Zhang, J. An, W. B. Haile, R. Echeverry, and D. K. Strickland, Microglial low-density lipoprotein receptor-related protein 1 mediates the effect of tissuetype plasminogen activator on matrix metalloproteinase-9 activity in the ischemic brain, J Cereb Blood Flow Metab, vol.29, pp.1946-1954, 2009.

M. Sashindranath, E. Sales, M. Daglas, R. Freeman, and A. L. Samson, The tissue-type plasminogen activator-plasminogen activator inhibitor 1 complex promotes neurovascular injury in brain trauma: evidence from mice and humans, Brain, vol.135, pp.3251-3264, 2012.

R. Polavarapu, M. C. Gongora, H. Yi, S. Ranganthan, and D. A. Lawrence, Tissue-type plasminogen activator-mediated shedding of astrocytic low-density lipoprotein receptor-related protein increases the permeability of the neurovascular unit, Blood, vol.109, pp.3270-3278, 2007.

O. Nicole, F. Docagne, C. Ali, I. Margaill, and P. Carmeliet, The proteolytic activity of tissue-plasminogen activator enhances NMDA receptormediated signaling, Nat Med, vol.7, pp.59-64, 2001.

K. K. Chung, V. L. Dawson, and T. M. Dawson, S-nitrosylation in Parkinson's disease and related neurodegenerative disorders, Methods Enzymol, vol.396, pp.139-150, 2005.

Z. Gu, M. Kaul, B. Yan, S. J. Kridel, and J. Cui, S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death, Science, vol.297, pp.1186-1190, 2002.

S. Manabe, Z. Gu, and S. A. Lipton, Activation of matrix metalloproteinase-9 via neuronal nitric oxide synthase contributes to NMDA-induced retinal ganglion cell death, Invest Ophthalmol Vis Sci, vol.46, pp.4747-4753, 2005.

S. R. Lee, K. Tsuji, S. R. Lee, and E. H. Lo, Role of matrix metalloproteinases in delayed neuronal damage after transient global cerebral ischemia, J Neurosci, vol.24, pp.671-678, 2004.

Y. Yang, E. Candelario-jalil, J. F. Thompson, E. Cuadrado, and E. Y. Estrada, Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia, J Neurochem, vol.112, pp.134-149, 2010.

J. W. Hill, R. Poddar, J. F. Thompson, G. A. Rosenberg, and Y. Yang, Intranuclear matrix metalloproteinases promote DNA damage and apoptosis induced by oxygen-glucose deprivation in neurons, Neuroscience, vol.220, pp.277-290, 2012.

P. Svedin, H. Hagberg, K. Savman, C. Zhu, and C. Mallard, Matrix metalloproteinase-9 gene knock-out protects the immature brain after cerebral hypoxia-ischemia, J Neurosci, vol.27, pp.1511-1518, 2007.

D. I. Chang, N. Hosomi, J. Lucero, J. H. Heo, and T. Abumiya, Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia, J Cereb Blood Flow Metab, vol.23, pp.1408-1419, 2003.

J. Liu, J. X. Liu, K. J. Liu, and W. , Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood-brain barrier damage in early ischemic stroke stage, J Neurosci, vol.32, pp.3044-3057, 2012.

F. Girolamo, D. Virgintino, M. Errede, C. Capobianco, and N. Bernardini, Involvement of metalloprotease-2 in the development of human brain microvessels, Histochem Cell Biol, vol.122, pp.261-270, 2004.

E. Mantuano, G. Inoue, X. Li, K. Takahashi, and A. Gaultier, The hemopexin domain of matrix metalloproteinase-9 activates cell signaling and promotes migration of schwann cells by binding to low-density lipoprotein receptor-related protein, J Neurosci, vol.28, pp.11571-11582, 2008.

Y. Yang, J. W. Hill, and G. A. Rosenberg, Multiple roles of metalloproteinases in neurological disorders, Prog Mol Biol Transl Sci, vol.99, pp.241-263, 2011.

H. Legros, S. Launay, B. D. Roussel, A. Marcou-labarre, and S. Calbo, Newborn-and adult-derived brain microvascular endothelial cells show agerelated differences in phenotype and glutamate-evoked protease release, J Cereb Blood Flow Metab, vol.29, pp.1146-1158, 2009.

V. J. Henry, M. Lecointre, V. Laudenbach, C. Ali, and R. Macrez, High t-PA release by neonate brain microvascular endothelial cells under glutamate exposure affects neuronal fate, Neurobiol Dis, vol.50, pp.201-208, 2013.

L. Sentilhes, P. Leroux, S. Radi, A. Ricbourg-schneider, and V. Laudenbach, Influence of Gestational-age on Fibrinolysis from Birth to Postnatal Day 10, J. Pediatrics, vol.158, pp.377-382, 2011.

P. Leroux and S. Marret, PAI-1/t-PA ratio in cord blood: a potential index of brain hemorrhage risk in extreme preterms, Arch Dis Child Fetal Neonatal Ed, 2013.