G. Montalban-bravo and G. Garcia-manero, Novel drugs for older patients with acute myeloid leukemia, Leukemia, vol.29, pp.760-769, 2015.

H. Dombret and C. Gardin, An update of current treatments for adult acute myeloid leukemia, Blood, vol.127, pp.53-61, 2016.

H. Döhner, D. J. Weisdorf, and C. D. Bloomfield, Acute myeloid leukemia, N Engl J Med, vol.373, pp.1136-52, 2015.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, pp.646-74, 2011.

L. B. Sullivan, D. Y. Gui, and H. Vander, Altered metabolite levels in cancer: implications for tumour biology and cancer therapy, Nat Rev Cancer, vol.16, pp.680-93, 2016.

N. N. Pavlova and C. B. Thompson, The emerging hallmarks of cancer metabolism, Cell Metab, vol.23, pp.27-47, 2016.

O. Warburg, F. Wind, and E. Negelein, The metabolism of tumors in the body, J Gen Physiol, vol.8, pp.519-549, 1927.

O. Warburg, On the origin of cancer cells, Science, vol.123, pp.309-323, 1956.

P. M. Herst, R. A. Howman, P. J. Neeson, M. V. Berridge, and D. S. Ritchie, The level of glycolytic metabolism in acute myeloid leukemia blasts at diagnosis is prognostic for clinical outcome, J Leukoc Biol, vol.89, pp.51-56, 2011.

W. Chen, J. Wang, A. Zhao, X. Xu, Y. Wang et al., A distinct glucose metabolism signature of acute myeloid leukemia with prognostic value, Blood, vol.124, pp.1645-54, 2014.

Y. Wang, W. J. Israelsen, D. Lee, V. Yu, N. T. Jeanson et al., Cellstate-specific metabolic dependency in hematopoiesis and leukemogenesis, Cell, vol.158, pp.1309-1332, 2014.

L. Poulain, P. Sujobert, F. Zylbersztejn, S. Barreau, L. Stuani et al., High mTORC1 activity drives glycolysis addiction and sensitivity to G6PD inhibition in acute myeloid leukemia cells, Leukemia, vol.31, pp.2326-2361, 2017.

H. Bhanot, E. L. Weisberg, M. M. Reddy, A. Nonami, D. Neuberg et al., Acute myeloid leukemia cells require 6-phosphogluconate dehydrogenase for cell growth and NADPH-dependent metabolic reprogramming, Oncotarget, vol.8, pp.67639-50, 2017.

R. Lin, S. Elf, C. Shan, H. Kang, J. Q. Zhou et al., 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling, Nat Cell Biol, vol.17, pp.1484-96, 2015.

S. Elf, R. Lin, S. Xia, Y. Pan, C. Shan et al., Targeting 6-phosphogluconate dehydrogenase in the oxidative PPP sensitizes leukemia cells to antimalarial agent dihydroartemisinin, Oncogene, vol.36, pp.254-62, 2017.

L. J. Akers, W. Fang, A. G. Levy, A. R. Franklin, P. Huang et al., Targeting glycolysis in leukemia: a novel inhibitor 3-BrOP in combination with rapamycin, Leuk Res, vol.35, pp.814-834, 2011.

Y. Tabe, A. Tafuri, K. Sekihara, H. Yang, and M. Konopleva, Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia, Expert Opin Ther Targets, vol.21, pp.705-719, 2017.

B. A. Carneiro, J. B. Kaplan, J. K. Altman, F. J. Giles, and L. C. Platanias, Targeting mTOR signaling pathways and related negative feedback loops for the treatment of acute myeloid leukemia, Cancer Biol Ther, vol.16, pp.648-56, 2015.

C. Recher, O. Beyne-rauzy, C. Demur, G. Chicanne, D. Santos et al., Antileukemic activity of rapamycin in acute myeloid leukemia, Blood, vol.105, pp.2527-2561, 2005.

L. Willems, N. Chapuis, A. Puissant, T. T. Maciel, A. S. Green et al., The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia, Leukemia, vol.26, pp.1195-202, 2012.

J. Tamburini, A. S. Green, V. Bardet, N. Chapuis, S. Park et al., Protein synthesis is resistant to rapamycin and constitutes a promising therapeutic target in acute myeloid leukemia, Blood, vol.114, pp.1618-1645, 2009.

B. J. Altman, S. R. Jacobs, E. F. Mason, R. D. Michalek, A. N. Macintyre et al., Autophagy is essential to suppress cell stress and to allow BCR-Ablmediated leukemogenesis, Oncogene, vol.30, pp.1855-67, 2011.

C. Larrue, E. Saland, F. Vergez, N. Serhan, E. Delabesse et al., Antileukemic activity of 2-deoxy-D-glucose through inhibition of N-linked glycosylation in acute myeloid leukemia with FLT3-ITD or c-KIT mutations, Mol Cancer Ther, vol.14, pp.2364-73, 2015.

H. Ju, G. Zhan, A. Huang, Y. Sun, S. Wen et al., ITD mutation in FLT3 tyrosine kinase promotes Warburg effect and renders therapeutic sensitivity to glycolytic inhibition, Leukemia, vol.31, pp.2143-50, 2017.

K. Yen, Z. Konteatis, Z. Sui, E. Artin, L. Dang et al., Abstract B126: AG-881, a brain penetrant, potent, pan-mutant IDH (mIDH) inhibitor for use in mIDH solid and hematologic malignancies, Therapeutic agents: Other topics, pp.126-132, 2018.

D. L. Stirewalt, F. R. Appelbaum, C. L. Willman, R. A. Zager, and D. E. Banker, Mevastatin can increase toxicity in primary AMLs exposed to standard therapeutic agents, but statin efficacy is not simply associated with ras hotspot mutations or overexpression, Leuk Res, vol.27, issue.02, pp.85-86, 2003.

M. Lishner, A. Bar-sef, A. Elis, and I. Fabian, Effect of simvastatin alone and in combination with cytosine arabinoside on the proliferation of myeloid leukemia cell lines, J Investig Med, vol.49, pp.319-343, 2001.

S. A. Holstein and R. J. Hohl, Interaction of cytosine arabinoside and lovastatin in human leukemia cells, Leuk Res, vol.25, issue.00, pp.162-166, 2001.

S. M. Kornblau, D. E. Banker, D. Stirewalt, D. Shen, E. Lemker et al., Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study, Blood, vol.109, pp.2999-3006, 2007.

A. S. Advani, H. Li, L. C. Michaelis, B. C. Medeiros, M. Liedtke et al., Report of the relapsed/refractory cohort of SWOG S0919: A phase 2 study of idarubicin and cytarabine in combination with pravastatin for acute myelogenous leukemia (AML), Leuk Res, vol.67, pp.17-20, 2018.

A. D. Southam, F. L. Khanim, R. E. Hayden, J. K. Constantinou, K. M. Koczula et al., Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids, Cancer Res, vol.75, pp.2530-2570, 2015.

F. L. Khanim, R. E. Hayden, J. Birtwistle, A. Lodi, S. Tiziani et al., Combined bezafibrate and medroxyprogesterone acetate: Potential novel therapy for acute myeloid leukaemia, PLoS One, vol.4, 2009.

J. A. Murray, F. L. Khanim, R. E. Hayden, C. F. Craddock, T. L. Holyoake et al., Combined bezafibrate and medroxyprogesterone acetate have efficacy without haematological toxicity in elderly and relapsed acute myeloid leukaemia (AML), Br J Haematol, vol.149, pp.65-74, 2010.

S. Mirabilii, M. Ricciardi, M. Piedimonte, V. Gianfelici, M. Bianchi et al., Biological aspects of mTOR in leukemia, Int J Mol Sci, vol.19, p.2396, 2018.

L. Willems, J. N. Jacquel, A. Neveux, N. Maciel, T. T. Lambert et al., Inhibiting glutamine uptake represents an attractive new strategy for treating acute myeloid leukemia, Blood, vol.122, pp.3521-3553, 2013.

E. Kim, P. Goraksha-hicks, L. Li, T. P. Neufeld, and K. Guan, Regulation of TORC1 by Rag GTPases in nutrient response, Nat Cell Biol, vol.10, pp.935-980, 2008.

P. Nicklin, P. Bergman, B. Zhang, E. Triantafellow, H. Wang et al., Bidirectional transport of amino acids regulates mTOR and autophagy, Cell, vol.136, pp.521-555, 2009.

C. T. Hensley, A. T. Wasti, and R. J. Deberardinis, Glutamine and cancer: cell biology, physiology, and clinical opportunities, J Clin Invest, vol.123, pp.3678-84, 2013.

B. J. Altman, Z. E. Stine, and C. V. Dang, From Krebs to clinic: glutamine metabolism to cancer therapy, Nat Rev Cancer, vol.16, pp.619-653, 2016.

R. J. Deberardinis, A. Mancuso, E. Daikhin, I. Nissim, M. Yudkoff et al., Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proc Natl Acad Sci U S A, vol.104, pp.19345-50, 2007.

M. G. Vander-heiden and R. J. Deberardinis, Understanding the intersections between metabolism and cancer biology, Cell, vol.168, pp.657-69, 2017.

L. K. Boroughs and R. J. Deberardinis, Metabolic pathways promoting cancer cell survival and growth, Nat Cell Biol, vol.17, pp.351-360, 2015.

S. Rabinovich, L. Adler, K. Yizhak, A. Sarver, A. Silberman et al., Diversion of aspartate in ASS1-deficient tumours fosters de novo pyrimidine synthesis, Nature, vol.527, pp.379-83, 2015.

A. Luengo and D. Y. Gui, Vander Heiden MG. Targeting metabolism for cancer therapy, Cell Chem Biol, vol.24, pp.1161-80, 2017.

E. Currie, A. Schulze, R. Zechner, T. C. Walther, and R. V. Farese, Cellular fatty acid metabolism and cancer, Cell Metab, vol.18, pp.153-61, 2013.

E. S. Pizer, F. D. Wood, G. R. Pasternack, and F. P. Kuhajda, Fatty acid synthase (FAS): a target for cytotoxic antimetabolites in HL60 promyelocytic leukemia cells, Cancer Res, vol.56, pp.745-51, 1996.

M. Reed, C. Ludwig, C. M. Bunce, F. L. Khanim, and U. L. Günther, Malonate as a ROS product is associated with pyruvate carboxylase activity in acute myeloid leukaemia cells, Cancer Metab, vol.4, p.15, 2016.

N. I. Fedotcheva, A. P. Sokolov, and M. N. Kondrashova, Nonezymatic formation of succinate in mitochondria under oxidative stress, Free Radic Biol Med, vol.41, pp.56-64, 2006.

S. Tiziani, A. Lodi, F. L. Khanim, M. R. Viant, C. M. Bunce et al., Metabolomic profiling of drug responses in acute myeloid leukaemia cell lines, PLoS One, vol.4, p.4251, 2009.

T. Kimura, J. Hauber, and T. P. Singer, Reversible activation of the mammalian enzyme, J Biol Chem, vol.13, pp.4987-93, 1967.

M. B. Thorn, Inhibition by malonate of succinic dehydrogenase in heartmuscle preparations, Biochem J, vol.54, pp.540-547, 1953.

E. T. Chouchani, V. R. Pell, E. Gaude, D. Aksentijevi?, S. Y. Sundier et al., Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS, Nature, vol.515, pp.431-436, 2014.

P. Phannasil, C. Thuwajit, M. Warnnissorn, J. C. Wallace, M. J. Macdonald et al., Pyruvate carboxylase is up-regulated in breast cancer and essential to support growth and invasion of MDA-MB-231 cells, PLoS One, vol.10, 2015.

P. Phannasil, I. H. Ansari, M. El-azzouny, M. J. Longacre, K. Rattanapornsompong et al., Mass spectrometry analysis shows the biosynthetic pathways supported by pyruvate carboxylase in highly invasive breast cancer cells, Biochim Biophys Acta Mol Basis Dis, vol.1863, pp.537-51, 2017.

T. Cheng, J. Sudderth, C. Yang, A. R. Mullen, E. S. Jin et al., Pyruvate carboxylase is required for glutamine-independent growth of tumor cells, Proc Natl Acad Sci U S A, vol.108, pp.8674-8683, 2011.

K. Sellers, M. P. Fox, M. Bousamra, S. P. Slone, R. M. Higashi et al., Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation, J Clin Invest, vol.125, pp.687-98, 2015.

S. M. Davidson, T. Papagiannakopoulos, B. A. Olenchock, J. E. Heyman, M. A. Keibler et al., Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer, Cell Metab, vol.23, pp.517-545, 2016.

S. Christen, D. Lorendeau, R. Schmieder, D. Broekaert, K. Metzger et al., Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent anaplerosis, Cell Rep, vol.17, pp.837-885, 2016.

R. D. Clutterbuck, B. C. Millar, R. L. Powles, A. Newman, D. Catovsky et al., Inhibitory effect of simvastatin on the proliferation of human myeloid leukaemia cells in severe combined immunodeficient (SCID) mice, Br J Haematol, vol.102, pp.522-529, 1998.

N. Cerqueira, E. F. Oliveira, D. S. Gesto, D. Santos-martins, C. Moreira et al., Cholesterol biosynthesis: A mechanistic overview, Biochemistry, vol.55, pp.5483-506, 2016.

W. H. Koppenol, P. L. Bounds, and C. V. Dang, Otto Warburg's contributions to current concepts of cancer metabolism, Nat Rev Cancer, vol.11, pp.325-362, 2011.

S. Weinhouse, O. Warburg, D. Burk, and A. Schade, On respiratory impairment in cancer cells, Science, vol.124, pp.267-276, 1956.

S. Weinhouse, Studies on the fate of isotopically labeled metabolites in the oxidative metabolism of tumors, Cancer Res, vol.11, pp.585-91, 1951.

S. Weinhouse, Oxidative metabolism of neoplastic tissues, Adv Cancer Res, vol.3, pp.60922-60929, 1955.

S. Sriskanthadevan, D. V. Jeyaraju, T. E. Chung, S. Prabha, W. Xu et al., AML cells have low spare reserve capacity in their respiratory chain that renders them susceptible to oxidative metabolic stress, Blood, vol.125, pp.2120-2150, 2015.

J. Boultwood, C. Fidler, K. I. Mills, P. M. Frodsham, R. Kusec et al., Amplification of mitochondrial DNA in acute myeloid leukaemia, Br J Haematol, vol.95, pp.426-457, 1996.

P. Pinton, A mitochondrial drug to treat AML, Blood, vol.129, pp.2597-2606, 2017.

C. Beuneu, R. Auger, M. Löffler, A. Guissani, G. Lemaire et al., Indirect inhibition of mitochondrial dihydroorotate dehydrogenase activity by nitric oxide, Free Radic Biol Med, vol.28, issue.00, pp.239-241, 2000.

A. Carracedo, L. C. Cantley, and P. P. Pandolfi, Cancer metabolism: fatty acid oxidation in the limelight, Nat Rev Cancer, vol.13, pp.227-259, 2013.

J. Shi, H. Fu, Z. Jia, K. He, L. Fu et al., High expression of CPT1A predicts adverse outcomes: A potential therapeutic target for acute myeloid leukemia, EBioMedicine, vol.14, pp.55-64, 2016.

T. Farge, E. Saland, F. De-toni, N. Aroua, M. Hosseini et al., Chemotherapy-resistant human acute myeloid leukemia cells are not enriched for leukemic stem cells but require oxidative metabolism, Cancer Discov, vol.7, pp.716-751, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608532

N. J. German, H. Yoon, R. Z. Yusuf, J. P. Murphy, L. Finley et al., PHD3 Loss in cancer enables metabolic reliance on fatty acid oxidation via deactivation of ACC2, Mol Cell, vol.63, pp.1006-1026, 2016.

Y. S. Cho, L. J. Il, D. Shin, H. T. Kim, H. Y. Jung et al., Molecular mechanism for the regulation of human ACC2 through phosphorylation by AMPK, Biochem Biophys Res Commun, vol.391, pp.187-92, 2010.

D. G. Hardie and D. A. Pan, Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase, Biochem Soc Trans, vol.30, pp.1064-70, 2002.

H. Bhanot, M. M. Reddy, A. Nonami, E. L. Weisberg, D. Bonal et al., Pathological glycogenesis through glycogen synthase 1 and suppression of excessive AMP kinase activity in myeloid leukemia cells, Leukemia, vol.29, pp.1555-63, 2015.

W. Chen, Y. Wang, A. Zhao, L. Xia, G. Xie et al., Enhanced fructose utilization mediated by SLC2A5 is a unique metabolic feature of acute myeloid leukemia with therapeutic potential, Cancer Cell, vol.30, pp.779-91, 2016.

P. Matre, J. Velez, R. Jacamo, Y. Qi, X. Su et al., Inhibiting glutaminase in acute myeloid leukemia: metabolic dependency of selected AML subtypes, Oncotarget, vol.7, pp.79722-79757, 2016.

T. Cai, P. L. Lorenzi, D. Rakheja, M. A. Pontikos, A. Lodi et al., Gls inhibitor CB-839 modulates cellular metabolism in AML and potently suppresses AML cell growth when combined with 5-azacitidine, Blood, vol.128, p.4064, 2016.

A. Emadi, Exploiting AML vulnerability: glutamine dependency, Blood, vol.126, pp.1269-70, 2015.

T. Akagi, D. Yin, N. Kawamata, C. R. Bartram, W. Hofmann et al., Methylation analysis of asparagine synthetase gene in acute lymphoblastic leukemia cells, Leukemia, vol.20, pp.1303-1309, 2006.

I. M. Michelozzi, V. Granata, D. Ponti, G. Alberti, G. Tomasoni et al., Acute myeloid leukaemia niche regulates response to L-asparaginase, Br J Haematol, 2019.

E. A. Ehsanipour, X. Sheng, J. W. Behan, X. Wang, A. Butturini et al., Adipocytes cause leukemia cell resistance to L-asparaginase via release of glutamine, Cancer Res, vol.73, pp.2998-3006, 2013.

J. Dimitroulakos, D. Nohynek, K. L. Backway, D. W. Hedley, H. Yeger et al., Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: A potential therapeutic approach, Blood, vol.93, pp.1308-1326, 1999.

M. Shadman, R. Mawad, C. Dean, T. L. Chen, K. Shannon-dorcy et al., Idarubicin, cytarabine, and pravastatin as induction therapy for untreated acute myeloid leukemia and high-risk myelodysplastic syndrome, Am J Hematol, vol.90, pp.483-489, 2015.

J. Chiche, J. Reverso-meinietti, A. Mouchotte, C. Rubio-patiño, R. Mhaidly et al., GAPDH expression predicts the response to R-CHOP, the tumor metabolic status, and the response of DLBCL patients to metabolic inhibitors, Cell Metab, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02359440

Y. Wu, R. Hurren, N. Maclean, M. Gronda, Y. Jitkova et al., Carnitine transporter CT2 (SLC22A16) is over-expressed in acute myeloid leukemia (AML) and target knockdown reduces growth and viability of AML cells, Apoptosis, vol.20, pp.1099-108, 2015.

D. A. Noe, E. K. Rowinsky, H. S. Shen, B. V. Clarke, L. B. Grochow et al., Phase I and pharmacokinetic study of brequinar sodium, vol.368390

, Cancer Res, vol.50, pp.4595-4604, 1990.

H. A. Burris, E. Raymond, A. Awada, J. G. Kuhn, T. J. O'rourke et al., Pharmacokinetic and phase I studies of brequinar (DUP 785; NSC 368390) in combination with cisplatin in patients with advanced malignancies, Invest New Drugs, vol.16, pp.19-27, 1998.

C. L. Arteaga, T. D. Brown, J. G. Kuhn, H. S. Shen, T. J. O'rourke et al., Phase I clinical and pharmacokinetic trial of Brequinar sodium

, NSC 368390), vol.49, pp.4648-53, 1989.

G. Schwartsmann, P. Dodion, J. B. Vermorken, W. W. Ten-bokkel-huinink, J. Joggi et al., Phase I study of Brequinar sodium (NSC 368390) in patients with solid malignancies, Cancer Chemother Pharmacol, vol.25, pp.345-51, 1990.

G. J. Peters, Re-evaluation of Brequinar sodium, a dihydroorotate dehydrogenase inhibitor, Nucleosides Nucleotides Nucleic Acids, vol.37, pp.1-13, 2018.

A. G. Letai, Diagnosing and exploiting cancer's addiction to blocks in apoptosis, Nat Rev Cancer, vol.8, pp.121-153, 2008.

A. Giordano, M. Calvani, O. Petillo, P. Grippo, F. Tuccillo et al., tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1, Cell Death Differ, vol.12, pp.603-616, 2005.

M. B. Paumen, Y. Ishida, H. Han, M. Muramatsu, Y. Eguchi et al., Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2, Biochem Biophys Res Commun, vol.231, pp.523-528, 1997.

J. S. Lee, A. Roberts, D. Juarez, T. Vo, S. Bhatt et al., Statins enhance efficacy of venetoclax in blood cancers, Sci Transl Med, vol.10, p.1240, 2018.

K. H. Lin, A. Xie, J. C. Rutter, Y. Ahn, J. M. Lloyd-cowden et al., Systematic dissection of the metabolic-apoptotic interface in AML reveals heme biosynthesis to be a regulator of drug sensitivity, Cell Metab, 2019.

H. Döhner, E. Estey, D. Grimwade, S. Amadori, F. R. Appelbaum et al., Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel, Blood, vol.129, pp.424-471, 2017.

E. R. Mardis, L. Ding, D. J. Dooling, D. E. Larson, M. D. Mclellan et al., Recurring mutations found by sequencing an acute myeloid leukemia genome, N Engl J Med, vol.361, pp.1058-66, 2009.

S. Abbas, S. Lugthart, F. G. Kavelaars, A. Schelen, J. E. Koenders et al., Acquired mutations in the genes encoding IDH1 and IDH2 both are recurrent aberrations in acute myeloid leukemia: prevalence and prognostic value, Blood, vol.116, pp.2122-2128, 2010.

G. Marcucci, K. Maharry, Y. Wu, M. D. Radmacher, K. Mrózek et al., IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study, J Clin Oncol, vol.28, pp.2348-55, 2010.

P. Paschka, R. F. Schlenk, V. I. Gaidzik, M. Habdank, J. Krönke et al., IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication, J Clin Oncol, vol.28, pp.3636-3679, 2010.

L. Dang, D. W. White, S. Gross, B. D. Bennett, M. A. Bittinger et al., Cancer-associated IDH1 mutations produce 2-hydroxyglutarate, Nature, vol.462, pp.739-783, 2009.

P. S. Ward, J. Patel, D. R. Wise, A. , O. Bennett et al., The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate, Cancer Cell, vol.17, pp.225-259, 2010.

M. E. Figueroa, O. Abdel-wahab, C. Lu, P. S. Ward, J. Patel et al., Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation, Cancer Cell, vol.18, pp.553-67, 2010.

S. Turcan, V. Makarov, J. Taranda, Y. Wang, A. Fabius et al., Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence, Nat Genet, vol.50, pp.62-72, 2018.

M. Sasaki, C. B. Knobbe, M. Itsumi, A. J. Elia, I. S. Harris et al., D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function, Genes Dev, vol.26, pp.2038-2087, 2012.

F. Wang, J. Travins, B. Delabarre, V. Penard-lacronique, S. Schalm et al., Targeted inhibition of mutant IDH2 in leukemia cells induces cellular differentiation, Science, vol.340, pp.622-628, 2013.

A. P. Chou, R. Chowdhury, S. Li, W. Chen, A. J. Kim et al., Identification of retinol binding protein 1 promoter hypermethylation in isocitrate dehydrogenase 1 and 2 mutant gliomas, JNCI J Natl Cancer Inst, vol.104, pp.1458-69, 2012.

P. Guilhamon, M. Eskandarpour, D. Halai, G. A. Wilson, A. Feber et al., Meta-analysis of IDH-mutant cancers identifies EBF1 as an interaction partner for TET2, Nat Commun, vol.4, p.2166, 2013.

W. A. Flavahan, Y. Drier, B. B. Liau, S. M. Gillespie, A. S. Venteicher et al., Insulator dysfunction and oncogene activation in IDH mutant gliomas, Nature, vol.529, pp.110-114, 2016.

T. Mazor, C. Chesnelong, A. Pankov, L. E. Jalbert, C. Hong et al., Clonal expansion and epigenetic reprogramming following deletion or amplification of mutant IDH1, Proc Natl Acad Sci U S A, vol.114, pp.10743-10751, 2017.

B. Jiang, J. Zhang, J. Xia, W. Zhao, Y. Wu et al., IDH1 Mutation promotes tumorigenesis by inhibiting JNK activation and apoptosis induced by serum starvation, Cell Rep, vol.19, pp.389-400, 2017.

H. Boutzen, E. Saland, C. Larrue, F. De-toni, L. Gales et al., Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia, J Exp Med, vol.213, pp.483-97, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01886383

L. M. Kats, M. Reschke, R. Taulli, O. Pozdnyakova, K. Burgess et al., Proto-oncogenic role of mutant IDH2 in leukemia initiation and maintenance, Cell Stem Cell, vol.14, pp.329-370, 2014.

J. Losman, R. E. Looper, P. Koivunen, S. Lee, R. K. Schneider et al., R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible, Science, vol.339, pp.1621-1626, 2013.

M. R. Corces-zimmerman and R. Majeti, Pre-leukemic evolution of hematopoietic stem cells: the importance of early mutations in leukemogenesis, Leukemia, vol.28, pp.2276-82, 2014.

L. I. Shlush, S. Zandi, A. Mitchell, W. C. Chen, J. M. Brandwein et al., Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia, Nature, vol.506, pp.328-361, 2014.

U. C. Okoye-okafor, B. Bartholdy, J. Cartier, E. N. Gao, B. Pietrak et al., New IDH1 mutant inhibitors for treatment of acute myeloid leukemia, Nat Chem Biol, vol.11, pp.878-86, 2015.

J. Popovici-muller, J. O. Saunders, F. G. Salituro, J. M. Travins, S. Yan et al., Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo, ACS Med Chem Lett, vol.3, pp.850-855, 2012.

D. Rohle, J. Popovici-muller, N. Palaskas, S. Turcan, C. Grommes et al., An inhibitor of mutant IDH1 delays growth and promotes differentiation of glioma cells, Science, vol.340, pp.626-656, 2013.

S. De-botton, D. A. Pollyea, and E. M. Stein, Clinical safety and activity of AG-120, a first-in-class, potent inhibitor of the IDH1 mutant protein, in a phase 1 study of patients with advanced IDH1-mutant hematologic malignancies

, Haematologica, vol.100, pp.214-219, 2015.

A. M. Intlekofer, A. H. Shih, B. Wang, A. Nazir, A. S. Rustenburg et al., Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations, Nature, vol.559, pp.125-134, 2018.

D. Thomas and R. Majeti, Optimizing next-generation AML therapy: Activity of mutant IDH2 inhibitor AG-221 in preclinical models, Cancer Discov, vol.7, pp.459-61, 2017.

M. S. Waitkus, B. H. Diplas, and H. Yan, Biological role and therapeutic potential of IDH mutations in cancer, Cancer Cell, 2018.

A. R. Grassian, S. J. Parker, S. M. Davidson, A. S. Divakaruni, C. R. Green et al., IDH1 mutations alter citric acid cycle metabolism and increase dependence on oxidative mitochondrial metabolism, Cancer Res, vol.74, pp.3317-3348, 2014.

M. J. Seltzer, B. D. Bennett, A. D. Joshi, P. Gao, A. G. Thomas et al., Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1, Cancer Res, vol.70, pp.8981-8988, 2010.

S. K. Mcbrayer, J. R. Mayers, G. J. Dinatale, D. D. Shi, J. Khanal et al., Transaminase inhibition by 2-hydroxyglutarate impairs glutamate biosynthesis and redox homeostasis in glioma, Cell, vol.175, pp.101-117, 2018.

M. Tönjes, S. Barbus, Y. J. Park, W. Wang, M. Schlotter et al., BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1, Nat Med, vol.19, pp.901-909, 2013.

S. Raffel, M. Falcone, N. Kneisel, J. Hansson, W. Wang et al., BCAT1 restricts ?KG levels in AML stem cells leading to IDHmut-like DNA hypermethylation, Nature, vol.551, pp.384-392, 2017.

E. Cuyàs, S. Fernández-arroyo, B. Corominas-faja, E. Rodríguez-gallego, J. Bosch-barrera et al., Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype, Oncotarget, vol.6, pp.12279-96, 2015.

F. Farshidfar, S. Zheng, M. Gingras, Y. Newton, J. Shih et al., Integrative genomic analysis of cholangiocarcinoma identifies distinct IDHmutant molecular profiles, Cell Rep, vol.19, pp.2878-80, 2017.

M. Khurshed, R. J. Molenaar, K. Lenting, W. P. Leenders, and C. Van-noorden, In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma, Oncotarget, vol.8, pp.49165-77, 2017.

S. Zhao, Y. Lin, W. Xu, W. Jiang, Z. Zha et al., Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha, Science, vol.324, pp.261-266, 2009.

F. E. Bleeker, N. A. Atai, S. Lamba, A. Jonker, D. Rijkeboer et al., The prognostic IDH1 R132 mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma, Acta Neuropathol, vol.119, pp.487-94, 2010.

R. J. Molenaar, D. Botman, M. A. Smits, V. V. Hira, S. A. Van-lith et al., Radioprotection of IDH1-mutated cancer cells by the IDH1-mutant inhibitor AGI-5198, Cancer Res, vol.75, pp.4790-802, 2015.

S. J. Gelman, F. Naser, N. G. Mahieu, L. D. Mckenzie, G. P. Dunn et al., Consumption of NADPH for 2-HG synthesis increases pentose phosphate pathway flux and sensitizes cells to oxidative stress, Cell Rep, vol.22, pp.512-534, 2018.

K. Hollinshead, H. Munford, K. L. Eales, C. Bardella, C. Li et al., Oncogenic IDH1 mutations promote enhanced proline synthesis through PYCR1 to support the maintenance of mitochondrial redox homeostasis, Cell Rep, vol.22, pp.3107-3121, 2018.

S. M. Chan, D. Thomas, M. R. Corces-zimmerman, S. Xavy, S. Rastogi et al., Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia, Nat Med, vol.21, pp.178-84, 2015.

E. H. Estey, Acute myeloid leukemia: 2019 update on risk-stratification and management, Am J Hematol, vol.93, pp.1267-91, 2018.

M. Moarii and E. Papaemmanuil, Classification and risk assessment in AML: integrating cytogenetics and molecular profiling, Hematol Am Soc Hematol Educ Progr, vol.2017, pp.37-44, 2017.

E. Papaemmanuil, M. Gerstung, L. Bullinger, V. I. Gaidzik, P. Paschka et al., Genomic classification and prognosis in acute myeloid leukemia, N Engl J Med, vol.374, pp.2209-2230, 2016.

T. Network, Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia, N Engl J Med, vol.368, pp.2059-74, 2013.

J. E. Cortes, H. Kantarjian, J. M. Foran, D. Ghirdaladze, M. Zodelava et al., Phase I study of quizartinib administered daily to patients with relapsed or refractory acute myeloid leukemia irrespective of FMS-like tyrosine kinase 3-internal tandem duplication status, J Clin Oncol, vol.31, pp.3681-3688, 2013.

M. J. Levis, A. E. Perl, H. Dombret, H. Döhner, B. Steffen et al., Final results of a phase 2 open-label, monotherapy efficacy and safety study of quizartinib (AC220) in patients with FLT3-ITD positive or negative relapsed/ refractory acute myeloid leukemia after second-line chemotherapy or hematopoietic stem cell transpplantation, Blood, vol.120, 2012.

K. W. Pratz and S. M. Luger, Will FLT3 inhibitors fulfill their promise in acute meyloid leukemia?, Curr Opin Hematol, vol.21, pp.72-80, 2014.

M. A. Gregory, D. 'alessandro, A. Alvarez-calderon, F. Kim, J. Nemkov et al., ATM/G6PD-driven redox metabolism promotes FLT3 inhibitor resistance in acute myeloid leukemia, Proc Natl Acad Sci U S A, vol.113, pp.6669-78, 2016.

C. Cosentino, D. Grieco, and V. Costanzo, ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair, EMBO J, vol.30, pp.546-55, 2011.

M. A. Gregory, T. Nemkov, J. A. Reisz, V. Zaberezhnyy, K. C. Hansen et al., Glutaminase inhibition improves FLT3 inhibitor therapy for acute myeloid leukemia, Exp Hematol, vol.58, pp.52-60, 2018.

F. Alvarez-calderon, M. A. Gregory, C. Pham-danis, D. Deryckere, B. M. Stevens et al., Tyrosine kinase inhibition in leukemia induces an altered metabolic state sensitive to mitochondrial perturbations, Clin Cancer Res, vol.21, pp.1360-72, 2015.

P. Gallipoli, G. Giotopoulos, K. Tzelepis, A. Costa, S. Vohra et al., Glutaminolysis is a metabolic dependency in FLT3ITD acute myeloid leukemia unmasked by FLT3 tyrosine kinase inhibition, Blood, vol.131, pp.1639-53, 2018.

C. F. Labuschagne, N. Van-den-broek, G. M. Mackay, K. H. Vousden, and O. Maddocks, Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells, Cell Rep, vol.7, pp.1248-58, 2014.

J. W. Locasale and . Serine, glycine and one-carbon units: cancer metabolism in full circle, Nat Rev Cancer, vol.13, pp.572-83, 2013.

A. C. Newman and O. Maddocks, One-carbon metabolism in cancer, Br J Cancer, vol.116, pp.1499-504, 2017.

M. Yang and K. H. Vousden, Serine and one-carbon metabolism in cancer, Nat Rev Cancer, vol.16, pp.650-62, 2016.

G. S. Ducker and J. D. Rabinowitz, One-carbon metabolism in health and disease, Cell Metab, vol.25, pp.27-42, 2017.

K. R. Mattaini and M. R. Sullivan, Vander Heiden MG. The importance of serine metabolism in cancer, J Cell Biol, vol.214, pp.249-57, 2016.

O. Maddocks, D. Athineos, E. C. Cheung, P. Lee, T. Zhang et al., Modulating the therapeutic response of tumours to dietary serine and glycine starvation, Nature, vol.544, pp.372-378, 2017.

I. Amelio, F. Cutruzzolá, A. Antonov, M. Agostini, and G. Melino, Serine and glycine metabolism in cancer, Trends Biochem Sci, vol.39, pp.191-199, 2014.

Y. Pikman, A. Puissant, G. Alexe, A. Furman, L. M. Chen et al., Targeting MTHFD2 in acute myeloid leukemia, J Exp Med, vol.213, pp.1285-306, 2016.

A. H. Shih, C. Meydan, K. Shank, F. E. Garrett-bakelman, P. S. Ward et al., Combination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2-and TET2-mutant acute myeloid leukemia, Cancer Discov, vol.7, pp.494-505, 2017.

D. Chen, S. Xia, M. Wang, R. Lin, Y. Li et al., Mutant and wild-type isocitrate dehydrogenase 1 share enhancing mechanisms involving distinct tyrosine kinase cascades in cancer. Cancer Discov, 2019.

J. Kaiser, Rigorous replication effort succeeds for just two of five cancer papers

C. G. Begley and L. M. Ellis, Raise standards for preclinical cancer research, Nature, vol.483, pp.531-534, 2012.

M. Baker and E. Dolgin, Cancer reproducibility project releases first results, Nature, vol.541, pp.269-70, 2017.

C. T. Hensley, B. Faubert, Q. Yuan, N. Lev-cohain, J. E. Kim et al., Metabolic heterogeneity in human lung tumors, Cell, vol.164, pp.681-94, 2016.

A. Muir, L. V. Danai, D. Y. Gui, C. Y. Waingarten, and C. A. Lewis, Vander Heiden MG. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition, Elife, vol.6, 2017.

L. Hutchinson and R. Kirk, High drug attrition rates-where are we going wrong?, Nat Rev Clin Oncol, vol.8, pp.189-90, 2011.

J. R. Cantor, M. Abu-remaileh, N. Kanarek, E. Freinkman, X. Gao et al., Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase, Cell, vol.169, pp.258-272, 2017.

J. Vande-voorde, T. Ackermann, N. Pfetzer, D. Sumpton, G. Mackay et al., Improving the metabolic fidelity of cancer models with a physiological cell culture medium, Sci Adv, vol.5, 2019.

S. Lagziel, W. D. Lee, and T. Shlomi, Inferring cancer dependencies on metabolic genes from large-scale genetic screens, BMC Biol, vol.17, p.37, 2019.

Y. Tabe, K. Saitoh, H. Yang, K. Sekihara, K. Yamatani et al., Inhibition of FAO in AML co-cultured with BM adipocytes: mechanisms of survival and chemosensitization to cytarabine, Sci Rep, vol.8, p.16837, 2018.

H. Ye, B. Adane, N. Khan, E. Alexeev, N. Nusbacher et al., Subversion of systemic glucose metabolism as a mechanism to support the growth of leukemia cells, Cancer Cell, vol.34, pp.659-673, 2018.

A. Muir and M. G. Vander-heiden, The nutrient environment affects therapy, Science, vol.360, pp.962-965, 2018.

M. Pollak, Diet boosts the effectiveness of a cancer drug, Nature, vol.560, pp.439-479, 2018.

C. M. Sousa, D. E. Biancur, X. Wang, C. J. Halbrook, M. H. Sherman et al., Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion, Nature, vol.536, pp.479-83, 2016.

N. S. Katheder, R. Khezri, F. O'farrell, S. W. Schultz, A. Jain et al., Microenvironmental autophagy promotes tumour growth, Nature, vol.541, pp.417-437, 2017.

L. Poillet-perez, X. Xie, L. Zhan, Y. Yang, D. W. Sharp et al., Autophagy maintains tumour growth through circulating arginine, Nature, vol.563, pp.569-73, 2018.

T. Ho, M. Lamere, B. M. Stevens, J. M. Ashton, J. R. Myers et al., Evolution of acute myelogenous leukemia stem cell properties after treatment and progression, Blood, vol.128, pp.1671-1679, 2016.

A. L. Boyd, L. Aslostovar, J. Reid, W. Ye, B. Tanasijevic et al., Identification of chemotherapy-induced leukemic-regenerating cells reveals a transient vulnerability of human AML recurrence, Cancer Cell, vol.34, pp.483-498, 2018.

C. D. Dinardo, C. R. Rausch, C. Benton, T. Kadia, N. Jain et al., Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies, Am J Hematol, vol.93, pp.401-408, 2018.

B. Nachmias and A. D. Schimmer, Metabolic flexibility in leukemia-adapt or die, Cancer Cell, vol.34, pp.695-701, 2018.

K. D. Courtney, D. Bezwada, T. Mashimo, K. Pichumani, V. Vemireddy et al., Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo, Cell Metab, vol.28, pp.793-800, 2018.

B. Faubert, K. Y. Li, L. Cai, C. T. Hensley, J. Kim et al., Lactate metabolism in human lung tumors, Cell, vol.171, pp.358-371, 2017.

, Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations