J. L. Degen, T. H. Bugge, and J. D. Goguen, Fibrin and fibrinolysis in infection and host defense, J Thromb Haemost, vol.5, issue.1, pp.24-31, 2007.

R. Szabo and T. H. Bugge, Membrane-anchored serine proteases in vertebrate cell and developmental biology, Annu Rev Cell Dev Biol, vol.27, pp.213-235, 2011.

J. R. Dunkelberger and W. C. Song, Complement and its role in innate and adaptive immune responses, Cell Res, vol.20, issue.1, pp.34-50, 2010.

S. Antoniak and N. Mackman, Multiple roles of the coagulation protease cascade during virus infection, Blood, vol.123, issue.17, pp.2605-2613, 2014.

B. Furie and B. C. Furie, Mechanisms of thrombus formation, N Engl J Med, vol.359, issue.9, pp.938-949, 2008.

N. Mackman, R. E. Tilley, and N. S. Key, Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis, Arterioscler Thromb Vasc Biol, vol.27, issue.8, pp.1687-1693, 2007.

T. A. Drake, J. H. Morrissey, and T. S. Edgington, Selective cellular expression of tissue factor in human tissues. Implications for disorders of hemostasis and thrombosis, Am J Pathol, vol.134, issue.5, pp.1087-1097, 1989.

B. Furie and B. C. Furie, The molecular basis of blood coagulation, Cell, vol.53, issue.4, pp.505-518, 1988.

R. B. Sim and A. Laich, Serine proteases of the complement system, Biochem Soc Trans, vol.28, issue.5, pp.545-550, 2000.

C. Y. Lin, I. C. Tseng, and F. P. Chou, Zymogen activation, inhibition, and ectodomain shedding of matriptase, Front Biosci, vol.13, pp.621-635, 2008.

C. Benaud, R. B. Dickson, and C. Y. Lin, Regulation of the activity of matriptase on epithelial cell surfaces by a blood-derived factor, Eur J Biochem, vol.268, issue.5, pp.1439-1447, 2001.

T. Der-poll and H. Herwald, The coagulation system and its function in early immune defense, Thromb Haemost, vol.112, issue.4, pp.640-648, 2014.

S. R. Coughlin, Thrombin signalling and proteaseactivated receptors, Nature, vol.407, issue.6801, pp.258-264, 2000.

E. Camerer, W. Huang, and S. R. Coughlin, Tissue factor-and factor X-dependent activation of protease-activated receptor 2 by factor VIIa, Proc Natl Acad Sci USA, vol.97, issue.10, pp.5255-5260, 2000.

E. Camerer, J. Røttingen, and E. Gjernes, Coagulation factors VIIa and Xa induce cell signaling leading to up-regulation of the egr-1 gene, J Biol Chem, vol.274, issue.45, pp.32225-32233, 1999.

M. Riewald and W. Ruf, Mechanistic coupling of protease signaling and initiation of coagulation by tissue factor, Proc Natl Acad Sci USA, vol.98, issue.14, pp.7742-7747, 2001.

V. S. Ossovskaya and N. W. Bunnett, Protease-activated receptors: contribution to physiology and disease, Physiol Rev, vol.84, issue.2, pp.579-621, 2004.

K. Oikonomopoulou, K. K. Hansen, and M. Saifeddine, Proteinase-activated receptors, targets for kallikrein signaling, J Biol Chem, vol.281, issue.43, pp.32095-32112, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00320918

C. Ebeling, T. Lam, J. R. Gordon, M. D. Hollenberg, and H. Vliagoftis, Proteinase-activated receptor-2 promotes allergic sensitization to an inhaled antigen through a TNF-mediated pathway, J Immunol, vol.179, issue.5, pp.2910-2917, 2007.

T. Takeuchi, J. L. Harris, W. Huang, K. W. Yan, S. R. Coughlin et al., Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates, J Biol Chem, vol.275, issue.34, pp.26333-26342, 2000.

E. Camerer, A. Barker, and D. N. Duong, Local protease signaling contributes to neural tube closure in the mouse embryo, Dev Cell, vol.18, issue.1, pp.25-38, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-02441502

M. Steinhoff, U. Neisius, and A. Ikoma, Proteinaseactivated receptor-2 mediates itch: a novel pathway for pruritus in human skin, J Neurosci, vol.23, issue.15, pp.6176-6180, 2003.

M. Steinhoff, N. Vergnolle, and S. H. Young, Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism, Nat Med, vol.6, issue.2, pp.151-158, 2000.

N. Vergnolle, The enteric nervous system in inflammation and pain: the role of proteinaseactivated receptors, Can J Gastroenterol, vol.17, issue.10, pp.589-592, 2003.

N. Vergnolle, N. W. Bunnett, and K. A. Sharkey, Proteinase-activated receptor-2 and hyperalgesia: A novel pain pathway, Nat Med, vol.7, issue.7, pp.821-826, 2001.

M. Steinhoff, J. Buddenkotte, and V. Shpacovitch, Proteinase-activated receptors: transducers of proteinase-mediated signaling in inflammation and immune response, Endocr Rev, vol.26, issue.1, pp.1-43, 2005.

M. Belting, M. I. Dorrell, and S. Sandgren, Regulation of angiogenesis by tissue factor cytoplasmic domain signaling, Nat Med, vol.10, issue.5, pp.502-509, 2004.

L. Badeanlou, C. Furlan-freguia, Y. G. Ruf, W. Samad, and F. , Tissue factor-protease-activated receptor 2 signaling promotes diet-induced obesity and adipose inflammation, Nat Med, vol.17, issue.11, pp.1490-1497, 2011.

H. H. Versteeg, F. Schaffner, and M. Kerver, Protease-activated receptor (PAR) 2, but not PAR1, signaling promotes the development of mammary adenocarcinoma in polyoma middle T mice, Cancer Res, vol.68, issue.17, pp.7219-7227, 2008.

E. M. Sparkenbaugh, P. Chantrathammachart, and J. Mickelson, Differential contribution of FXa and thrombin to vascular inflammation in a mouse model of sickle cell disease, Blood, vol.123, issue.11, pp.1747-1756, 2014.

K. List, C. C. Haudenschild, and R. Szabo, Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis, Oncogene, vol.21, issue.23, pp.3765-3779, 2002.

C. Leyvraz, R. P. Charles, and I. Rubera, The epidermal barrier function is dependent on the serine protease CAP1/Prss8, J Cell Biol, vol.170, issue.3, pp.487-496, 2005.

D. H. Madsen, R. Szabo, A. A. Molinolo, and T. H. Bugge, TMPRSS13 deficiency impairs stratum corneum formation and epidermal barrier acquisition, Biochem J, vol.461, issue.3, pp.487-495, 2014.

M. S. Buzza, S. Netzel-arnett, and T. Shea-donohue, Membrane-anchored serine protease matriptase regulates epithelial barrier formation and permeability in the intestine, Proc Natl Acad Sci, vol.107, issue.9, pp.4200-4205, 2010.

C. Planès, N. H. Randrianarison, and R. P. Charles, ENaC-mediated alveolar fluid clearance and lung fluid balance depend on the channel-activating protease 1, EMBO Mol Med, vol.2, issue.1, pp.26-37, 2010.

S. Friis, U. Sales, K. Godiksen, and S. , A matriptase-prostasin reciprocal zymogen activation complex with unique features: prostasin as a nonenzymatic co-factor for matriptase activation, J Biol Chem, vol.288, issue.26, pp.19028-19039, 2013.

R. Szabo, J. P. Hobson, K. Christoph, P. Kosa, K. List et al., Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice, Development, vol.136, issue.15, pp.2653-2663, 2009.

H. Tanaka, K. Nagaike, and N. Takeda, Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is required for branching morphogenesis in the chorioallantoic placenta, Mol Cell Biol, vol.25, issue.13, pp.5687-5698, 2005.

R. Szabo, A. Molinolo, K. List, and T. H. Bugge, Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development, Oncogene, vol.26, issue.11, pp.1546-1556, 2007.

R. Szabo, U. Sales, K. Kosa, and P. , Reduced prostasin (CAP1/PRSS8) activity eliminates HAI-1 and HAI-2 deficiency-associated developmental defects by preventing matriptase activation, PLoS Genet, vol.8, issue.8, p.1002937, 2012.

N. D. Rawlings, M. Waller, A. J. Barrett, and A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res, vol.42, pp.503-509, 2014.

M. D. Oberst, L. Y. Chen, and K. Kiyomiya, HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease, Am J Physiol Cell Physiol, vol.289, issue.2, pp.462-470, 2005.

M. Chen, L. M. Chen, C. Y. Lin, and K. X. Chai, Hepsin activates prostasin and cleaves the extracellular domain of the epidermal growth factor receptor, Mol Cell Biochem, vol.337, issue.1-2, pp.259-266, 2010.

K. U. Sales, S. Friis, and J. E. Konkel, Nonhematopoietic PAR-2 is essential for matriptasedriven pre-malignant progression and potentiation of ras-mediated squamous cell carcinogenesis, Oncogene, vol.34, issue.3, pp.346-356, 2015.

S. Frateschi, E. Camerer, and G. Crisante, PAR2 absence completely rescues inflammation and ichthyosis caused by altered CAP1/Prss8 expression in mouse skin, Nat Commun, vol.2, p.161, 2011.

M. J. Ludeman, Y. W. Zheng, K. Ishii, and S. R. Coughlin, Regulated shedding of PAR1 N-terminal exodomain from endothelial cells, J Biol Chem, vol.279, issue.18, pp.18592-18599, 2004.

E. Camerer, S. Pringle, and A. H. Skartlien, Opposite sorting of tissue factor in human umbilical vein endothelial cells and Madin-Darby canine kidney epithelial cells, Blood, vol.88, issue.4, pp.1339-1349, 1996.

J. Trejo, A. J. Connolly, and S. R. Coughlin, The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice, J Biol Chem, vol.271, issue.35, pp.21536-21541, 1996.

K. S. Larsen, H. Ostergaard, O. H. Olsen, J. R. Bjelke, W. Ruf et al., Engineering of substrate selectivity for tissue factor.factor VIIa complex signaling through protease-activated receptor 2, J Biol Chem, vol.285, issue.26, pp.19959-19966, 2010.

F. P. Chou, H. Xu, and M. S. Lee, Matriptase is inhibited by extravascular antithrombin in epithelial cells but not in most carcinoma cells, Am J Physiol Cell Physiol, vol.301, issue.5, pp.1093-1103, 2011.

S. Ghosh, U. R. Pendurthi, A. Steinoe, C. T. Esmon, and L. V. Rao, Endothelial cell protein C receptor acts as a cellular receptor for factor VIIa on endothelium, J Biol Chem, vol.282, issue.16, pp.11849-11857, 2007.

J. Disse, H. H. Petersen, and K. S. Larsen, The endothelial protein C receptor supports tissue factor ternary coagulation initiation complex signaling through protease-activated receptors, J Biol Chem, vol.286, issue.7, pp.5756-5767, 2011.

H. P. Liang, E. J. Kerschen, and I. Hernandez, EPCR-dependent PAR2 activation by the blood coagulation initiation complex regulates LPStriggered interferon responses in mice, Blood, vol.125, issue.18, pp.2845-2854, 2015.

C. J. Farady, P. F. Egea, E. L. Schneider, M. R. Darragh, and C. S. Craik, Structure of an Fab-protease complex reveals a highly specific non-canonical mechanism of inhibition, J Mol Biol, vol.380, issue.2, pp.351-360, 2008.

K. H. Driesbaugh, M. S. Buzza, E. W. Martin, G. D. Conway, J. P. Kao et al., Proteolytic activation of the protease-activated receptor (PAR)-2 by the glycosylphosphatidylinositol-anchored serine protease testisin, J Biol Chem, vol.290, issue.6, pp.3529-3541, 2015.

S. L. Lee, R. B. Dickson, and C. Y. Lin, Activation of hepatocyte growth factor and urokinase/ plasminogen activator by matriptase, an epithelial membrane serine protease, J Biol Chem, vol.275, issue.47, pp.36720-36725, 2000.

L. M. Kilpatrick, R. L. Harris, and K. A. Owen, Initiation of plasminogen activation on the surface of monocytes expressing the type II transmembrane serine protease matriptase, Blood, vol.108, issue.8, pp.2616-2623, 2006.

J. A. Røttingen, T. Enden, E. Camerer, J. G. Iversen, and H. Prydz, Binding of human factor VIIa to tissue factor induces cytosolic Ca21 signals in J82 cells, transfected COS-1 cells, Madin-Darby canine kidney cells and in human endothelial cells induced to synthesize tissue factor, J Biol Chem, vol.270, issue.9, pp.4650-4660, 1995.

E. Camerer, J. A. Røttingen, J. G. Iversen, and H. Prydz, Coagulation factors VII and X induce Ca21 oscillations in Madin-Darby canine kidney cells only when proteolytically active, J Biol Chem, vol.271, issue.46, pp.29034-29042, 1996.

E. Camerer, H. Kataoka, M. Kahn, K. Lease, and S. R. Coughlin, Genetic evidence that proteaseactivated receptors mediate factor Xa signaling in endothelial cells, J Biol Chem, vol.277, issue.18, pp.16081-16087, 2002.

K. List, J. P. Hobson, A. Molinolo, and T. H. Bugge, Co-localization of the channel activating protease prostasin/(CAP1/PRSS8) with its candidate activator, matriptase, J Cell Physiol, vol.213, issue.1, pp.237-245, 2007.

S. J. Soifer, K. G. Peters, J. O'keefe, and S. R. Coughlin, Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development, Am J Pathol, vol.144, issue.1, pp.60-69, 1994.

H. Kataoka, J. R. Hamilton, and D. D. Mckemy, Protease-activated receptors 1 and 4 mediate thrombin signaling in endothelial cells, Blood, vol.102, issue.9, pp.3224-3231, 2003.

M. Riewald, R. J. Petrovan, A. Donner, B. M. Mueller, and W. Ruf, Activation of endothelial cell protease activated receptor 1 by the protein C pathway, Science, vol.296, issue.5574, pp.1880-1882, 2002.

K. U. Sales, A. Masedunskas, and A. L. Bey, Matriptase initiates activation of epidermal prokallikrein and disease onset in a mouse model of Netherton syndrome, Nat Genet, vol.42, issue.8, pp.676-683, 2010.

S. Netzel-arnett, B. M. Currie, and R. Szabo, Evidence for a matriptase-prostasin proteolytic cascade regulating terminal epidermal differentiation, J Biol Chem, vol.281, issue.44, pp.32941-32945, 2006.

T. Takeuchi, M. A. Shuman, and C. S. Craik, Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue, Proc Natl Acad Sci, vol.96, issue.20, pp.11054-11061, 1999.

C. Benaud, M. Oberst, J. P. Hobson, S. Spiegel, R. B. Dickson et al., Sphingosine 1-phosphate, present in serum-derived lipoproteins, activates matriptase, J Biol Chem, vol.277, issue.12, pp.10539-10546, 2002.

E. Camerer, E. Gjernes, M. Wiiger, S. Pringle, and H. Prydz, Binding of factor VIIa to tissue factor on keratinocytes induces gene expression, J Biol Chem, vol.275, issue.9, pp.6580-6585, 2000.

J. Romer, T. H. Bugge, and C. Pyke, Impaired wound healing in mice with a disrupted plasminogen gene, Nat Med, vol.2, issue.3, pp.287-292, 1996.

K. List, R. Szabo, and P. W. Wertz, Loss of proteolytically processed filaggrin caused by epidermal deletion of Matriptase/MT-SP1, J Cell Biol, vol.163, issue.4, pp.901-910, 2003.

R. Szabo, A. L. Rasmussen, and A. B. Moyer, c-Metinduced epithelial carcinogenesis is initiated by the serine protease matriptase, Oncogene, vol.30, issue.17, pp.2003-2016, 2011.

G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, Wound repair and regeneration, Nature, vol.453, issue.7193, pp.314-321, 2008.

P. Redecha, C. W. Franzke, W. Ruf, N. Mackman, and G. Girardi, Neutrophil activation by the tissue factor/Factor VIIa/PAR2 axis mediates fetal death in a mouse model of antiphospholipid syndrome, J Clin Invest, vol.118, issue.10, pp.3453-3461, 2008.

S. Koizume, M. S. Jin, and E. Miyagi, Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII, Cancer Res, vol.66, pp.9453-9460, 2006.

F. Schaffner, H. H. Versteeg, and A. Schillert, Cooperation of tissue factor cytoplasmic domain and PAR2 signaling in breast cancer development, Blood, vol.116, issue.26, pp.6106-6113, 2010.

G. L. Zoratti, L. M. Tanabe, and F. A. Varela, Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling, Nat Commun, vol.6, p.6776, 2015.

Y. Liu, P. Jiang, and K. Capkova, Tissue factoractivated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy, Cancer Res, vol.71, issue.20, pp.6492-6502, 2011.

J. L. Degen and J. S. Palumbo, Hemostatic factors, innate immunity and malignancy, Thromb Res, vol.129, issue.1, pp.1-5, 2012.

H. H. Versteeg, F. Schaffner, and M. Kerver, Inhibition of tissue factor signaling suppresses tumor growth, Blood, vol.111, issue.1, pp.190-199, 2008.

K. List, R. Szabo, and A. Molinolo, Deregulated matriptase causes ras-independent multistage carcinogenesis and promotes ras-mediated malignant transformation, Genes Dev, vol.19, issue.16, pp.1934-1950, 2005.