L. Wolpert, Gastrulation and the evolution of development Dev, pp.7-13, 1992.

R. Keller, Shaping the vertebrate body plan by polarized embryonic cell movements, Science, vol.298, pp.1950-1954, 2002.

I. Alvarez and G. Schoenwolf, Expansion of surface epithelium provides the major extrinsic force for bending of the neural plate, J. Exp. Zool, vol.261, pp.340-348, 1992.

R. Keller, L. Davidson, and D. Shook, How we are shaped: the biomechanics of gastrulation Differentiation, vol.71, pp.171-205, 2003.

L. Wolpert, R. Beddington, T. Jessell, P. Lawrence, M. E. Smith et al., Principles of Development, 2002.

. Dawes-hoang-r-e, K. Parmar, A. Christiansen, C. Phelps, A. Brand et al., Folded gastrulation, cell shape change and the control of myosin localization Development, vol.132, pp.4165-78, 2005.

P. Morize, A. E. Christiansen, M. Costa, S. Parks, and E. Wieschaus, Hyperactivation of the folded gastrulation pathway induces specific cell shape changes Development, vol.125, pp.589-97, 1998.

M. Costa, E. Wilson, and E. Wieschaus, A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation, Cell, vol.76, pp.1075-89, 1994.

K. Barrett, M. Leptin, and J. Settleman, The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation, Cell, vol.91, pp.905-920, 1997.

E. Kimberly and J. Hardin, Bottle cells are required for the initiation of primary invagination in the sea urchin embryo, Dev. Biol, vol.204, pp.235-50, 1998.

M. Costa, D. Sweeton, and E. Wieschaus, Gastrulation in Drosophila: cellular mechanisms of morphogenetic movements The Development, pp.425-64, 1993.

Y. Nakajima and R. Burke, The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells, Dev. Biol, vol.179, pp.436-482, 1996.

L. Davidson, M. Koehl, R. Keller, and G. Oster, How do sea urchins invaginate? Using biomechanics to distinguish between mechanisms of primary invagination Development, vol.121, pp.2005-2023, 1995.

J. Munoz, B. K. Miodownik, and M. , A deformation gradient decomposition method for the analysis of the mechanics of morphogenesis, J. Biomech, vol.40, pp.1372-80, 2007.

J. Thomas and E. Wieschaus, src64 and tec29 are required for microfilament contraction during Drosophila cellularization Development, vol.131, pp.863-71, 2004.

L. Landau and E. Lifshitz, Fluid Mechanics, vol.6, 1959.

D. Sweeton, S. Parks, C. M. Wieschaus, and E. , Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations Development, vol.112, pp.775-89, 1991.

V. Kolsch, T. Seher, G. Fernandez-ballester, L. Serrano, and M. Leptin, Control of Drosophila gastrulation by apical localization of adherens junctions and RhoGEF2 Science, vol.315, pp.384-390, 2007.

M. Leptin and B. Grunewald, Cell shape changes during gastrulation in Drosophila Development, vol.110, pp.73-84, 1990.

V. Conte, J. Munoz, and M. Miodownik, A 3D finite element model of ventral furrow invagination in the Drosophila Melanogaster embryo, J. Mech. Behav. Biomed. Mater. I, vol.188, p.98, 2008.

E. Farge, Mechanical induction of twist in the Drosophila foregut/stomodeal primordium, Curr. Biol, vol.13, pp.1365-77, 2003.

J. Hens, K. Wilson, P. Dann, X. Chen, M. Horowitz et al., TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro, J. Bone Miner. Res, vol.20, pp.1103-1116, 2005.

K. Somogyi and P. Rorth, Evidence for tension-based regulation of Drosophila MAL and SRF during invasive cell migration, Dev. Cell, vol.7, pp.85-93, 2004.