O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, issue.6391, pp.162-167, 1992.

P. H. Sorensen, S. L. Lessnick, D. Lopez-terrada, X. F. Liu, T. J. Triche et al., A second Ewing's sarcoma translocation, t(21;22), fuses the EWS gene to another ETS-family transcription factor, ERG. Nature genetics, vol.6, pp.146-51, 1994.

R. Todorova, Structure-function based molecular relationships in Ewing's sarcoma. BioMed research international, p.798426, 2015.

N. M. Marina, Q. Liu, S. S. Donaldson, C. A. Sklar, G. T. Armstrong et al., Longitudinal follow-up of adult survivors of Ewing sarcoma: A report from the Childhood Cancer Survivor Study, 2017.

A. S. Brohl, D. A. Solomon, W. Chang, J. Wang, Y. Song et al., The genomic landscape of the Ewing Sarcoma family of tumors reveals recurrent STAG2 mutation, PLoS genetics, vol.10, issue.7, p.1004475, 2014.

B. D. Crompton, C. Stewart, A. Taylor-weiner, G. Alexe, K. C. Kurek et al., The genomic landscape of pediatric Ewing sarcoma, Cancer discovery, vol.4, issue.11, pp.1326-1367, 2014.

M. S. Lawrence, P. Stojanov, P. Polak, G. V. Kryukov, K. Cibulskis et al., Mutational heterogeneity in cancer and the search for new cancer-associated genes, Nature, vol.499, issue.7457, pp.214-222, 2013.

E. L. Putiri and K. D. Robertson, Epigenetic mechanisms and genome stability, Clinical epigenetics, vol.2, issue.2, pp.299-314, 2011.

Y. Shi, F. Lan, C. Matson, P. Mulligan, J. R. Whetstine et al., Histone demethylation mediated by the nuclear amine oxidase homolog LSD1, Cell, vol.119, issue.7, pp.941-53, 2004.

E. R. Theisen, K. I. Pishas, R. S. Saund, and S. L. Lessnick, Therapeutic opportunities in Ewing sarcoma: EWS-FLI inhibition via LSD1 targeting, Oncotarget, vol.7, issue.14, pp.17616-17646, 2016.

T. Lv, D. Yuan, X. Miao, Y. Lv, P. Zhan et al., Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer, PloS one, vol.7, issue.4, p.35065, 2012.

J. H. Schulte, S. Lim, A. Schramm, N. Friedrichs, J. Koster et al., Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy. Cancer research, vol.69, pp.2065-71, 2009.

Y. Yu, B. Wang, K. Zhang, Z. Lei, Y. Guo et al., High expression of lysine-specific demethylase 1 correlates with poor prognosis of patients with esophageal squamous cell carcinoma. Biochemical and biophysical research communications, vol.437, pp.192-200, 2013.

C. Chen, J. Ge, Q. Lu, G. Ping, C. Yang et al., Expression of Lysine-specific demethylase 1 in human epithelial ovarian cancer, Journal of ovarian research, vol.8, p.28, 2015.

I. M. Bennani-baiti, I. Machado, A. Llombart-bosch, and H. Kovar, Lysine-specific demethylase 1 (LSD1/ KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma. Human pathology, vol.43, pp.1300-1307, 2012.

V. Sorna, E. R. Theisen, B. Stephens, S. L. Warner, D. J. Bearss et al., High-throughput virtual screening identifies novel N'-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors, Journal of medicinal chemistry, vol.56, issue.23, pp.9496-508, 2013.

S. Sankar, E. R. Theisen, J. Bearss, T. Mulvihill, L. M. Hoffman et al., Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clinical cancer research : an official journal of the American Association for Cancer Research, vol.20, pp.4584-97, 2014.

H. P. Mohammad, K. N. Smitheman, C. D. Kamat, D. Soong, K. E. Federowicz et al., A DNA Hypomethylation Signature Predicts Antitumor Activity of LSD1 Inhibitors in SCLC, Cancer cell, vol.28, issue.1, pp.57-69, 2015.

K. Cawley, S. Deegan, A. Samali, and S. Gupta, Assays for detecting the unfolded protein response, Methods in enzymology, vol.490, pp.31-51, 2011.

S. L. Volchenboum, J. Andrade, L. Huang, D. A. Barkauskas, M. Krailo et al., Gene Expression Profiling of Ewing Sarcoma Tumors Reveals the Prognostic Importance of Tumor-Stromal Interactions: A Report from the Children's Oncology Group. The journal of pathology Clinical research, vol.1, pp.83-94, 2015.

K. L. Schaefer, M. Eisenacher, Y. Braun, K. Brachwitz, D. H. Wai et al., Microarray analysis of Ewing's sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy, Eur J Cancer, vol.44, issue.5, pp.699-709, 2008.

A. Ohali, S. Avigad, R. Zaizov, R. Ophir, S. Horn-saban et al., Prediction of high risk Ewing's sarcoma by gene expression profiling, Oncogene, vol.23, issue.55, pp.8997-9006, 2004.

B. I. Ferreira, J. Alonso, J. Carrillo, F. Acquadro, C. Largo et al., Array CGH and geneexpression profiling reveals distinct genomic instability patterns associated with DNA repair and cell-cycle checkpoint pathways in Ewing's sarcoma, Oncogene, vol.27, issue.14, pp.2084-90, 2008.

S. Postel-vinay, A. S. Veron, F. Tirode, G. Pierron, S. Reynaud et al., Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma, Nature genetics, vol.44, issue.3, pp.323-330, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02438686

S. Gupta, A. Weston, J. Bearrs, T. Thode, A. Neiss et al., Reversible lysine-specific demethylase 1 antagonist HCI-2509 inhibits growth and decreases c-MYC in castration-and docetaxel-resistant prostate cancer cells. Prostate cancer and prostatic diseases, vol.19, pp.349-57, 2016.

S. Gupta, K. Doyle, T. L. Mosbruger, A. Butterfield, A. Weston et al., Reversible LSD1 inhibition with HCI-2509 induces the p53 gene expression signature and disrupts the MYCN signature in high-risk neuroblastoma cells, Oncotarget, vol.9, issue.11, pp.9907-9931, 2018.

F. Tirode, D. Surdez, X. Ma, M. Parker, L. Deley et al., Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations, Cancer discovery, vol.4, issue.11, pp.1342-53, 2014.

W. A. May, R. S. Grigoryan, N. Keshelava, D. J. Cabral, L. L. Christensen et al., Characterization and drug resistance patterns of Ewing's sarcoma family tumor cell lines, PloS one, vol.8, issue.12, p.80060, 2013.

C. Zibetti, A. Adamo, C. Binda, F. Forneris, E. Toffolo et al., Alternative splicing of the histone demethylase LSD1/KDM1 contributes to the modulation of neurite morphogenesis in the mammalian nervous system, The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.30, issue.7, pp.2521-2553, 2010.

K. Stegmaier, J. S. Wong, K. N. Ross, K. T. Chow, D. Peck et al., Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma, PLoS medicine, vol.4, issue.4, p.122, 2007.

A. Van-schadewijk, E. F. Van't-wout, J. Stolk, and P. S. Hiemstra, A quantitative method for detection of spliced X-box binding protein-1 (XBP1) mRNA as a measure of endoplasmic reticulum (ER) stress. Cell stress & chaperones, vol.17, pp.275-284, 2012.

B. D. Price, L. A. Mannheim-rodman, and S. K. Calderwood, Brefeldin A, thapsigargin, and AIF4-stimulate the accumulation of GRP78 mRNA in a cycloheximide dependent manner, whilst induction by hypoxia is independent of protein synthesis, Journal of cellular physiology, vol.152, issue.3, pp.545-52, 1992.

A. Karytinos, F. Forneris, A. Profumo, G. Ciossani, E. Battaglioli et al., A novel mammalian flavin-dependent histone demethylase, The Journal of biological chemistry, vol.284, issue.26, pp.17775-82, 2009.

R. Fang, A. J. Barbera, Y. Xu, M. Rutenberg, T. Leonor et al., Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation, Molecular cell, vol.39, issue.2, pp.222-255, 2010.

P. Eirew, A. Steif, J. Khattra, G. Ha, D. Yap et al., Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution, Nature, vol.518, issue.7539, pp.422-428, 2015.

, Cancer Genome Atlas Research N. Comprehensive molecular characterization of urothelial bladder carcinoma, Nature, vol.507, issue.7492, pp.315-337, 2014.

H. Beltran, D. Prandi, J. M. Mosquera, M. Benelli, L. Puca et al., Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer, Nature medicine, vol.22, issue.3, pp.298-305, 2016.

T. A. Katz, S. N. Vasilatos, E. Harrington, S. Oesterreich, N. E. Davidson et al., Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells, Breast cancer research and treatment, vol.146, issue.1, pp.99-108, 2014.

F. Crea, L. Sun, A. Mai, Y. T. Chiang, W. L. Farrar et al., The emerging role of histone lysine demethylases in prostate cancer, Molecular cancer, vol.11, p.52, 2012.

J. C. Brenner, F. Y. Feng, S. Han, S. Patel, S. V. Goyal et al., PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma. Cancer research, vol.72, pp.1608-1621, 2012.

K. I. Pishas and S. L. Lessnick, Recent advances in targeted therapy for Ewing sarcoma, 1000.

S. Lv, W. Bu, H. Jiao, B. Liu, L. Zhu et al., LSD1 is required for chromosome segregation during mitosis, European journal of cell biology, vol.89, issue.7, pp.557-63, 2010.

A. Schooley, D. Moreno-andres, D. Magistris, P. Vollmer, B. et al., The lysine demethylase LSD1 is required for nuclear envelope formation at the end of mitosis, Journal of cell science, vol.128, issue.18, pp.3466-77, 2015.

E. Szegezdi, S. E. Logue, A. M. Gorman, and A. Samali, Mediators of endoplasmic reticulum stress-induced apoptosis, EMBO reports, vol.7, issue.9, pp.880-885, 2006.

S. Oyadomari and M. Mori, Roles of CHOP/GADD153 in endoplasmic reticulum stress, Cell death and differentiation, vol.11, issue.4, pp.381-390, 2004.

S. Adhikari, J. A. Toretsky, L. Yuan, and R. Roy, Magnesium, essential for base excision repair enzymes, inhibits substrate binding of N-methylpurine-DNA glycosylase, The Journal of biological chemistry, vol.281, issue.40, pp.29525-29557, 2006.

J. Castex, D. Willmann, T. Kanouni, L. Arrigoni, Y. Li et al., Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4, Cell death & disease, vol.8, issue.2, p.2631, 2017.

K. Kosumi, Y. Baba, A. Sakamoto, T. Ishimoto, K. Harada et al., Lysine-specific demethylase-1 contributes to malignant behavior by regulation of invasive activity and metabolic shift in esophageal cancer, International journal of cancer Journal international du cancer, vol.138, issue.2, pp.428-467, 2016.

Y. Qin, W. Zhu, W. Xu, B. Zhang, S. Shi et al., LSD1 sustains pancreatic cancer growth via maintaining HIF1alpha-dependent glycolytic process. Cancer letters, vol.347, pp.225-257, 2014.

A. Sakamoto, S. Hino, K. Nagaoka, K. Anan, R. Takase et al., Lysine Demethylase LSD1 Coordinates Glycolytic and Mitochondrial Metabolism in Hepatocellular Carcinoma Cells, Cancer research, vol.75, issue.7, pp.1445-56, 2015.

, Data represents mean SP-2509 IC 50 ± SEM from three independent experiments. Open symbols denote most (SK-N-MC) and least (TC-71) SP-2509 sensitive cell lines

. Pishas, , p.24

, mRNA expression levels of HSPA5, DDIT3, ERN1 and spliced XBP1 in TC252 cells following treatment with DMSO, Thapsigargin (50nM) or SP-2509 (2uM) for the indicated time periods. Data represents mean expression ± SEM from triplicate reactions. (G) PCR analysis of unspliced (XPB1-US) and spliced XBP1 (XPB1-S) in TC252 cells following treatment as in (E), Mol Cancer Ther. Author, p.19, 2019.

, manuscript; available in PMC, Mol Cancer Ther. Author, 2019.