E. Y. Son and G. R. Crabtree, The role of BAF (mSWI/SNF) complexes in mammalian neural development, Am. J. Med. Genet. C Semin. Med. Genet, vol.166, pp.333-349, 2014.

E. Sarnowska, D. M. Gratkowska, S. P. Sacharowski, P. Cwiek, T. Tohge et al., The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk, Trends Plant Sci, vol.21, pp.594-608, 2016.

I. Versteege, N. Sévenet, J. Lange, M. Rousseau-merck, P. Ambros et al., Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer, Nature, vol.394, pp.203-206, 1998.

A. H. Shain and J. R. Pollack, The spectrum of SWI/SNF mutations, ubiquitous in human cancers, PloS One, vol.8, p.55119, 2013.

C. Kadoch, D. C. Hargreaves, C. Hodges, L. Elias, L. Ho et al., Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy, Nat. Genet, vol.45, pp.592-601, 2013.

K. C. Wiegand, S. P. Shah, O. M. Al-agha, Y. Zhao, K. Tse et al., ARID1A mutations in endometriosisassociated ovarian carcinomas, N. Engl. J. Med, vol.363, pp.1532-1543, 2010.

M. Stern, R. Jensen, and I. Herskowitz, Five SWI genes are required for expression of the HO gene in yeast, J. Mol. Biol, vol.178, pp.853-868, 1984.

L. Neigeborn and M. Carlson, Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae, Genetics, vol.108, pp.845-858, 1984.

C. L. Peterson and I. Herskowitz, Characterization of the yeast SWI1, SWI2, and SWI3 genes, which encode a global activator of transcription, Cell, vol.68, pp.573-583, 1992.

C. Kadoch and G. R. Crabtree, Mammalian SWI/SNF chromatin remodeling complexes and cancer: Mechanistic insights gained from human genomics, Sci. Adv, vol.1, p.1500447, 2015.

D. Reisman, S. Glaros, and E. A. Thompson, The SWI/SNF complex and cancer, Oncogene, vol.28, pp.1653-1668, 2009.

L. Breeden and K. Nasmyth, Cell cycle control of the yeast HO gene: cis-and trans-acting regulators, Cell, vol.48, pp.389-397, 1987.

J. A. Martens, P. J. Wu, and F. Winston, Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae, Genes Dev, vol.19, pp.2695-2704, 2005.

T. H. Chi, M. Wan, K. Zhao, I. Taniuchi, L. Chen et al., Reciprocal regulation of CD4/CD8 expression by SWI/SNF-like BAF complexes, Nature, vol.418, pp.195-199, 2002.

W. Wang, J. Côté, Y. Xue, S. Zhou, P. A. Khavari et al., Purification and biochemical heterogeneity of the mammalian SWI-SNF complex, EMBO J, vol.15, pp.5370-5382, 1996.

F. Winston and C. D. Allis, The bromodomain: a chromatin-targeting module?, Nat. Struct. Biol, vol.6, pp.601-604, 1999.

A. Dahiya, M. R. Gavin, R. X. Luo, and D. C. Dean, Role of the LXCXE binding site in Rb function, Mol. Cell. Biol, vol.20, pp.6799-6805, 2000.

C. Muchardt and M. Yaniv, ATP-dependent chromatin remodelling: SWI/SNF and Co. are on the job, J. Mol. Biol, vol.293, pp.187-198, 1999.

T. Oike, H. Ogiwara, Y. Tominaga, K. Ito, O. Ando et al., A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1, Cancer Res, vol.73, pp.5508-5518, 2013.

G. R. Hoffman, R. Rahal, F. Buxton, K. Xiang, G. Mcallister et al., Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.3128-3133, 2014.

K. C. Helming, X. Wang, and C. W. Roberts, Vulnerabilities of mutant SWI/SNF complexes in cancer, Cancer Cell, vol.26, pp.309-317, 2014.

J. Masliah-planchon, I. Bièche, J. Guinebretière, F. Bourdeaut, and O. Delattre, SWI/SNF chromatin remodeling and human malignancies, vol.10, pp.145-171, 2015.

Y. Tang, J. Wang, Y. Lian, C. Fan, P. Zhang et al., Linking long non-coding RNAs and SWI/SNF complexes to chromatin remodeling in cancer, Mol. Cancer, vol.16, p.42, 2017.

Z. Yan, K. Cui, D. M. Murray, C. Ling, Y. Xue et al., PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, to regulate expression of selective interferon-responsive genes, Genes Dev, vol.19, pp.1662-1667, 2005.

M. M. Kasten, C. R. Clapier, and B. R. Cairns, SnapShot: Chromatin remodeling: SWI/SNF, vol.144, 2011.

J. I. Wu, J. Lessard, and G. R. Crabtree, Understanding the words of chromatin regulation, Cell, vol.136, pp.200-206, 2009.

S. Bultman, T. Gebuhr, D. Yee, C. L. Mantia, J. Nicholson et al., A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes, Mol. Cell, vol.6, pp.1287-1295, 2000.

J. K. Kim, S. O. Huh, H. Choi, K. S. Lee, D. Shin et al., Srg3, a mouse homolog of yeast SWI3, is essential for early embryogenesis and involved in brain development, Mol. Cell. Biol, vol.21, pp.7787-7795, 2001.

S. Matsumoto, F. Banine, J. Struve, R. Xing, C. Adams et al., Brg1 is required for murine neural stem cell maintenance and gliogenesis, Dev. Biol, vol.289, pp.372-383, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188038

A. Klochendler-yeivin, L. Fiette, J. Barra, C. Muchardt, C. Babinet et al., The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression, EMBO Rep, vol.1, pp.500-506, 2000.

X. Gao, P. Tate, P. Hu, R. Tjian, W. C. Skarnes et al., ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a, Proc. Natl. Acad. Sci. U. S. A, vol.105, pp.6656-6661, 2008.

Z. Yan, Z. Wang, L. Sharova, A. A. Sharov, C. Ling et al., BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells, Stem Cells Dayt. Ohio, vol.26, pp.1155-1165, 2008.

B. L. Kidder, S. Palmer, and J. G. Knott, SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells, Stem Cells Dayt. Ohio, vol.27, pp.317-328, 2009.

L. Ho, R. Jothi, J. L. Ronan, K. Cui, K. Zhao et al., An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5187-5191, 2009.

L. Ho, J. L. Ronan, J. Wu, B. T. Staahl, L. Chen et al., An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.5181-5186, 2009.

J. Lessard, J. I. Wu, J. A. Ranish, M. Wan, M. M. Winslow et al., An essential switch in subunit composition of a chromatin remodeling complex during neural development, Neuron, vol.55, pp.201-215, 2007.

I. Olave, W. Wang, Y. Xue, A. Kuo, and G. R. Crabtree, Identification of a polymorphic, neuronspecific chromatin remodeling complex, Genes Dev, vol.16, pp.2509-2517, 2002.

J. I. Wu, J. Lessard, I. A. Olave, Z. Qiu, A. Ghosh et al., Regulation of dendritic development by neuron-specific chromatin remodeling complexes, Neuron, vol.56, pp.94-108, 2007.

H. Sawa, H. Kouike, and H. Okano, Components of the SWI/SNF complex are required for asymmetric cell division in C. elegans, Mol. Cell, vol.6, pp.617-624, 2000.

C. Hansis, G. Barreto, N. Maltry, and C. Niehrs, Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1, Curr. Biol. CB, vol.14, pp.1475-1480, 2004.

S. Seo, G. A. Richardson, and K. L. Kroll, The SWI/SNF chromatin remodeling protein Brg1 is required for vertebrate neurogenesis and mediates transactivation of Ngn and NeuroD, Dev. Camb. Engl, vol.132, pp.105-115, 2005.

J. K. Takeuchi and B. G. Bruneau, Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors, Nature, vol.459, pp.708-711, 2009.

W. Cai, S. Albini, K. Wei, E. Willems, R. M. Guzzo et al., Coordinate Nodal and BMP inhibition directs Baf60c-dependent cardiomyocyte commitment, Genes Dev, vol.27, pp.2332-2344, 2013.

H. Lickert, J. K. Takeuchi, I. Von, J. R. Both, F. Walls et al., Baf60c is essential for function of BAF chromatin remodelling complexes in heart development, Nature, vol.432, pp.107-112, 2004.

S. Albini, P. Coutinho, B. Malecova, L. Giordani, A. Savchenko et al., Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres, Cell Rep, vol.3, pp.661-670, 2013.

P. C. Toto, P. L. Puri, and S. Albini, SWI/SNF-directed stem cell lineage specification: dynamic composition regulates specific stages of skeletal myogenesis, Cell. Mol. Life Sci. CMLS, vol.73, pp.3887-3896, 2016.

H. Lomelí and J. Castillo-robles, The developmental and pathogenic roles of BAF57, a special subunit of the BAF chromatin-remodeling complex, FEBS Lett, vol.590, pp.1555-1569, 2016.

P. Zhang, L. Li, Z. Bao, and F. Huang, Role of BAF60a/BAF60c in chromatin remodeling and hepatic lipid metabolism, Nutr. Metab, vol.13, p.30, 2016.

L. Ho, E. L. Miller, J. L. Ronan, W. Q. Ho, R. Jothi et al., esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function, Nat. Cell Biol, vol.13, pp.903-913, 2011.

B. G. Wilson, X. Wang, X. Shen, E. S. Mckenna, M. E. Lemieux et al., Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation, Cancer Cell, vol.18, pp.316-328, 2010.

B. H. Alver, K. H. Kim, P. Lu, X. Wang, H. E. Manchester et al., The SWI/SNF chromatin remodelling complex is required for maintenance of lineage specific enhancers, Nat. Commun, vol.8, p.14648, 2017.

C. Kadoch, R. T. Williams, J. P. Calarco, E. L. Miller, C. M. Weber et al., Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states, Nat. Genet, vol.49, pp.213-222, 2017.

J. A. Biegel, G. Kalpana, E. S. Knudsen, R. J. Packer, C. W. Roberts et al., The role of INI1 and the SWI/SNF complex in the development of rhabdoid tumors: meeting summary from the workshop on childhood atypical teratoid/rhabdoid tumors, vol.62, pp.323-328, 2002.

F. Bourdeaut, S. N. Chi, and M. C. Frühwald, Rhabdoid tumors: integrating biological insights with clinical success: a report from the SMARCB1 and Rhabdoid Tumor Symposium, vol.207, pp.346-351, 2013.

X. Wang, J. R. Haswell, and C. W. Roberts, Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer--mechanisms and potential therapeutic insights, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.20, pp.21-27, 2014.

M. Yaniv, Chromatin remodeling: from transcription to cancer, Cancer Genet, vol.207, pp.352-357, 2014.

J. I. Geller, J. J. Roth, and J. A. Biegel, Biology and Treatment of Rhabdoid Tumor, Crit. Rev. Oncog, vol.20, pp.199-216, 2015.

K. H. Kim and C. W. Roberts, Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth, Cancer Genet, vol.207, pp.365-372, 2014.

R. S. Lee, C. Stewart, S. L. Carter, L. Ambrogio, K. Cibulskis et al., A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers, J. Clin. Invest, vol.122, pp.2983-2988, 2012.

B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. A. Diaz et al., Cancer genome landscapes, Science, vol.339, pp.1546-1558, 2013.

D. A. Weeks, J. B. Beckwith, G. W. Mierau, and D. W. Luckey, Rhabdoid tumor of kidney. A report of 111 cases from the National Wilms' Tumor Study Pathology Center, Am. J. Surg. Pathol, vol.13, pp.439-458, 1989.

L. B. Rorke, R. J. Packer, and J. A. Biegel, Central nervous system atypical teratoid/rhabdoid tumors of infancy and childhood: definition of an entity, J. Neurosurg, vol.85, pp.56-65, 1996.

J. E. Haas, N. F. Palmer, A. G. Weinberg, and J. B. Beckwith, Ultrastructure of malignant rhabdoid tumor of the kidney. A distinctive renal tumor of children, Hum. Pathol, vol.12, pp.646-657, 1981.

M. Tsuneyoshi, Y. Daimaru, H. Hashimoto, and M. Enjoji, Malignant soft tissue neoplasms with the histologic features of renal rhabdoid tumors: an ultrastructural and immunohistochemical study, Hum. Pathol, vol.16, pp.1235-1242, 1985.

A. D. Trobaugh-lotrario, G. E. Tomlinson, M. J. Finegold, L. Gore, and J. H. Feusner, Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoid tumors, Pediatr. Blood Cancer, vol.52, pp.328-334, 2009.

D. Rizzo, P. Fréneaux, H. Brisse, C. Louvrier, D. Lequin et al., SMARCB1 deficiency in tumors from the peripheral nervous system: a link between schwannomas and rhabdoid tumors?, Am. J. Surg. Pathol, vol.36, pp.964-972, 2012.

T. J. Hollmann and J. L. Hornick, INI1-deficient tumors: diagnostic features and molecular genetics, Am. J. Surg. Pathol, vol.35, pp.47-63, 2011.

S. K. Kia, M. M. Gorski, S. Giannakopoulos, and C. P. Verrijzer, SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus, vol.28, pp.3457-3464, 2008.

B. G. Wilson, X. Wang, X. Shen, E. S. Mckenna, M. E. Lemieux et al., Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation, Cancer Cell, vol.18, pp.316-328, 2010.

R. T. Nakayama, J. L. Pulice, A. M. Valencia, M. J. Mcbride, Z. M. Mckenzie et al., SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters, Nat. Genet, vol.49, p.1613, 2017.

B. Brennan, C. Stiller, and F. Bourdeaut, Extracranial rhabdoid tumours: what we have learned so far and future directions, Lancet Oncol, vol.14, issue.13, pp.70088-70091, 2013.

R. Schneppenheim, M. C. Frühwald, S. Gesk, M. Hasselblatt, A. Jeibmann et al., Germline nonsense mutation and somatic inactivation of SMARCA4/BRG1 in a family with rhabdoid tumor predisposition syndrome, Am. J. Hum. Genet, vol.86, pp.279-284, 2010.

I. Christiaans, S. B. Kenter, H. C. Brink, T. A. Van-os, F. Baas et al., Germline SMARCB1 mutation and somatic NF2 mutations in familial multiple meningiomas, J. Med. Genet, vol.48, pp.93-97, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00573999

C. Bacci, R. Sestini, A. Provenzano, I. Paganini, I. Mancini et al., Schwannomatosis associated with multiple meningiomas due to a familial SMARCB1 mutation, Neurogenetics, vol.11, pp.73-80, 2010.

M. Maccollin, W. Woodfin, D. Kronn, and M. P. Short, Schwannomatosis: a clinical and pathologic study, Neurology, vol.46, pp.1072-1079, 1996.

T. J. Hulsebos, A. S. Plomp, R. A. Wolterman, E. C. Robanus-maandag, F. Baas et al., Germline mutation of INI1/SMARCB1 in familial schwannomatosis, Am. J. Hum. Genet, vol.80, pp.805-810, 2007.

M. J. Smith, A. J. Wallace, N. L. Bowers, C. F. Rustad, C. G. Woods et al., Frequency of SMARCB1 mutations in familial and sporadic schwannomatosis, Neurogenetics, vol.13, pp.141-145, 2012.

M. J. Smith, J. A. Walker, Y. Shen, A. Stemmer-rachamimov, J. F. Gusella et al., Expression of SMARCB1 (INI1) mutations in familial schwannomatosis, Hum. Mol. Genet, vol.21, pp.5239-5245, 2012.

L. M. Sullivan, A. L. Folpe, B. R. Pawel, A. R. Judkins, and J. A. Biegel, Epithelioid sarcoma is associated with a high percentage of SMARCB1 deletions, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, vol.26, pp.385-392, 2013.

L. Chbani, L. Guillou, P. Terrier, A. V. Decouvelaere, F. Grégoire et al., Epithelioid sarcoma: a clinicopathologic and immunohistochemical analysis of 106 cases from the French sarcoma group, Am. J. Clin. Pathol, vol.131, pp.222-227, 2009.

J. L. Hornick, P. Cin, and C. D. Fletcher, Loss of INI1 expression is characteristic of both conventional and proximal-type epithelioid sarcoma, Am. J. Surg. Pathol, vol.33, pp.542-550, 2009.

P. Modena, E. Lualdi, F. Facchinetti, L. Galli, M. R. Teixeira et al., SMARCB1/INI1 tumor suppressor gene is frequently inactivated in epithelioid sarcomas, Cancer Res, vol.65, pp.4012-4019, 2005.

J. M. Orrock, J. J. Abbott, L. E. Gibson, and A. L. Folpe, INI1 and GLUT-1 expression in epithelioid sarcoma and its cutaneous neoplastic and nonneoplastic mimics, Am. J. Dermatopathol, vol.31, pp.152-156, 2009.

J. C. Cordoba, D. M. Parham, W. H. Meyer, and E. C. Douglass, A new cytogenetic finding in an epithelioid sarcoma, vol.72, pp.151-154, 1994.

F. L. Loarer, L. Zhang, C. D. Fletcher, A. Ribeiro, S. Singer et al., Consistent SMARCB1 homozygous deletions in epithelioid sarcoma and in a subset of myoepithelial carcinomas can be reliably detected by FISH in archival material, Genes. Chromosomes Cancer, vol.53, pp.475-486, 2014.

L. Guillou, C. Wadden, J. M. Coindre, T. Krausz, and C. D. Fletcher, Proximal-type" epithelioid sarcoma, a distinctive aggressive neoplasm showing rhabdoid features. Clinicopathologic, immunohistochemical, and ultrastructural study of a series, Am. J. Surg. Pathol, vol.21, pp.130-146, 1997.

F. M. Enzinger, Epitheloid sarcoma. A sarcoma simulating a granuloma or a carcinoma, Cancer, vol.26, pp.1029-1041, 1970.

J. Calderaro, J. Moroch, G. Pierron, F. Pedeutour, C. Grison et al., SMARCB1/INI1 inactivation in renal medullary carcinoma, pp.428-435, 2012.

J. X. Cheng, M. Tretiakova, C. Gong, S. Mandal, T. Krausz et al., Renal medullary carcinoma: rhabdoid features and the absence of INI1 expression as markers of aggressive behavior, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, vol.21, pp.647-652, 2008.

J. Calderaro, J. Masliah-planchon, W. Richer, L. Maillot, P. Maille et al., Balanced Translocations Disrupting SMARCB1 Are Hallmark Recurrent Genetic Alterations in Renal Medullary Carcinomas, Eur. Urol, vol.69, pp.1055-1061, 2016.

A. A. Hakimi, P. T. Koi, P. M. Milhoua, N. M. Blitman, M. Li et al., Renal medullary carcinoma: the Bronx experience, Urology, vol.70, pp.878-882, 2007.

J. R. Srigley and B. Delahunt, Uncommon and recently described renal carcinomas, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, vol.22, issue.2, 2009.

C. J. Davis, F. K. Mostofi, and I. A. Sesterhenn, Renal medullary carcinoma. The seventh sickle cell nephropathy, Am. J. Surg. Pathol, vol.19, pp.1-11, 1995.

M. A. Swartz, J. Karth, D. T. Schneider, R. Rodriguez, J. B. Beckwith et al., Renal medullary carcinoma: clinical, pathologic, immunohistochemical, and genetic analysis with pathogenetic implications, Urology, vol.60, pp.1083-1089, 2002.

A. Agaimy, The expanding family of SMARCB1(INI1)-deficient neoplasia: implications of phenotypic, biological, and molecular heterogeneity, Adv. Anat. Pathol, vol.21, pp.394-410, 2014.

J. A. Bishop, C. R. Antonescu, and W. H. Westra, SMARCB1 (INI-1)-deficient carcinomas of the sinonasal tract, Am. J. Surg. Pathol, vol.38, pp.1282-1289, 2014.

A. Agaimy, A. Hartmann, C. R. Antonescu, S. I. Chiosea, S. K. El-mofty et al., SMARCB1 (INI-1)-deficient Sinonasal Carcinoma: A Series of 39 Cases Expanding the Morphologic and Clinicopathologic Spectrum of a Recently Described Entity, Am. J. Surg. Pathol, vol.41, pp.458-471, 2017.

J. L. Llorente, F. López, C. Suárez, and M. A. Hermsen, Sinonasal carcinoma: clinical, pathological, genetic and therapeutic advances, Nat. Rev. Clin. Oncol, vol.11, pp.460-472, 2014.

J. Laco, M. Chmela?ová, H. Vo?miková, K. Sieglová, I. Bubancová et al., SMARCB1/INI1-deficient sinonasal carcinoma shows methylation of RASSF1 gene: A clinicopathological, immunohistochemical and molecular genetic study of a recently described entity, Pathol. Res. Pract, vol.213, pp.133-142, 2017.

F. Jamshidi, E. Pleasance, Y. Li, Y. Shen, K. Kasaian et al., Diagnostic value of next-generation sequencing in an unusual sphenoid tumor, The Oncologist, vol.19, pp.623-630, 2014.

M. Hasselblatt, C. Thomas, V. Hovestadt, D. Schrimpf, P. Johann et al., Poorly differentiated chordoma with SMARCB1/INI1 loss: a distinct molecular entity with dismal prognosis, Acta Neuropathol. (Berl.), vol.132, pp.149-151, 2016.

C. Kadoch and G. R. Crabtree, Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma, Cell, vol.153, pp.71-85, 2013.

J. Clark, P. J. Rocques, A. J. Crew, S. Gill, J. Shipley et al., 2) translocation found in human synovial sarcoma, Nat. Genet, vol.7, pp.502-508, 1994.

M. J. Mcbride, J. L. Pulice, R. T. Nakayama, N. Mashtalir, D. R. Ingram et al., Abstract 3875: SSX drives gain-of-function BAF complex chromatin affinity and genomic targeting in synovial sarcoma, Cancer Res, vol.77, pp.3875-3875, 2017.

T. Kubo, S. Shimose, J. Fujimori, T. Furuta, and M. Ochi, Prognostic value of SS18-SSX fusion type in synovial sarcoma; systematic review and meta-analysis, SpringerPlus, p.375, 2015.

S. J. Bultman, J. I. Herschkowitz, V. Godfrey, T. C. Gebuhr, M. Yaniv et al., Characterization of mammary tumors from Brg1 heterozygous mice, Oncogene, vol.27, pp.460-468, 2008.

L. Witkowski, J. Carrot-zhang, S. Albrecht, S. Fahiminiya, N. Hamel et al., Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type, Nat. Genet, vol.46, pp.438-443, 2014.

F. L. Loarer, S. Watson, G. Pierron, V. T. De-montpreville, S. Ballet et al., SMARCA4 inactivation defines a group of undifferentiated thoracic malignancies transcriptionally related to BAFdeficient sarcomas, vol.47, pp.1200-1205, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01684775

R. H. Young, E. Oliva, and R. E. Scully, Small cell carcinoma of the ovary, hypercalcemic type. A clinicopathological analysis of 150 cases, Am. J. Surg. Pathol, vol.18, pp.1102-1116, 1994.

P. Ramos, A. N. Karnezis, W. P. Hendricks, Y. Wang, W. Tembe et al., Loss of the tumor suppressor SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type (SCCOHT), Rare Dis, Austin Tex, vol.2, p.967148, 2014.

P. Jelinic, J. J. Mueller, N. Olvera, F. Dao, S. N. Scott et al., Recurrent SMARCA4 mutations in small cell carcinoma of the ovary, Nat. Genet, vol.46, pp.424-426, 2014.

W. D. Foulkes, B. A. Clarke, M. Hasselblatt, J. Majewski, S. Albrecht et al., No small surprise -small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour, J. Pathol, vol.233, pp.209-214, 2014.

A. Yoshida, E. Kobayashi, T. Kubo, M. Kodaira, T. Motoi et al.,

A. Watanabe, T. Kawai, H. Kohno, H. Kishimoto, N. Ichikawa et al., Clinicopathological and molecular characterization of SMARCA4-deficient thoracic sarcomas with comparison to potentially related entities, Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc, 2017.

C. Love, Z. Sun, D. Jima, G. Li, J. Zhang et al., The genetic landscape of mutations in Burkitt lymphoma, Nat. Genet, vol.44, pp.1321-1325, 2012.

P. P. Medina, J. Carretero, M. F. Fraga, M. Esteller, D. Sidransky et al., Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRG1, in lung tumors, Genes. Chromosomes Cancer, vol.41, pp.170-177, 2004.

P. P. Medina, O. A. Romero, T. Kohno, L. M. Montuenga, R. Pio et al., Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines, vol.29, pp.617-622, 2008.

M. Imielinski, A. H. Berger, P. S. Hammerman, B. Hernandez, T. J. Pugh et al., Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing, Cell, vol.150, pp.1107-1120, 2012.

A. M. Dulak, P. Stojanov, S. Peng, M. S. Lawrence, C. Fox et al., Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity, Nat. Genet, vol.45, pp.478-486, 2013.

A. S. Ho, K. Kannan, D. M. Roy, L. G. Morris, I. Ganly et al., The mutational landscape of adenoid cystic carcinoma, Nat. Genet, vol.45, pp.791-798, 2013.

K. J. Brayer, C. A. Frerich, H. Kang, and S. A. Ness, Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor-Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma, Cancer Discov, vol.6, pp.176-187, 2016.

A. Agaimy, O. Daum, B. Märkl, I. Lichtmannegger, M. Michal et al., SWI/SNF Complexdeficient Undifferentiated/Rhabdoid Carcinomas of the Gastrointestinal Tract: A Series of 13 Cases Highlighting Mutually Exclusive Loss of SMARCA4 and SMARCA2 and Frequent Coinactivation of SMARCB1 and SMARCA2, Am. J. Surg. Pathol, vol.40, pp.544-553, 2016.

B. G. Wilson, K. C. Helming, X. Wang, Y. Kim, F. Vazquez et al., Residual Complexes Containing SMARCA2 (BRM) Underlie the Oncogenic Drive of SMARCA4 (BRG1) Mutation, vol.34, pp.1136-1144, 2014.

A. N. Karnezis, Y. Wang, P. Ramos, W. P. Hendricks, E. Oliva et al., Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type, J. Pathol, vol.238, pp.389-400, 2016.

G. R. Hoffman, R. Rahal, F. Buxton, K. Xiang, G. Mcallister et al., Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.3128-3133, 2014.

T. Oike, H. Ogiwara, Y. Tominaga, K. Ito, O. Ando et al., A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1, Cancer Res, vol.73, pp.5508-5518, 2013.

P. Jelinic, B. A. Schlappe, N. Conlon, J. Tseng, N. Olvera et al., Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type, Mod. Pathol, vol.29, pp.60-66, 2016.

S. Fahiminiya, L. Witkowski, J. Nadaf, J. Carrot-zhang, C. Goudie et al., Molecular analyses reveal close similarities between small cell carcinoma of the ovary, hypercalcemic type and atypical teratoid/rhabdoid tumor, Oncotarget, vol.7, pp.1732-1740, 2016.

J. L. Sauter, R. P. Graham, B. T. Larsen, S. M. Jenkins, A. C. Roden et al., SMARCA4-deficient thoracic sarcoma: a distinctive clinicopathological entity with undifferentiated rhabdoid morphology and aggressive behavior, Mod. Pathol, 2017.

X. Wang, R. S. Lee, B. H. Alver, J. R. Haswell, S. Wang et al., SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation, Nat. Genet, vol.49, pp.289-295, 2017.

E. Chan-penebre, K. Armstrong, A. Drew, A. R. Grassian, I. Feldman et al., Selective Killing of SMARCA2-and SMARCA4-deficient Small Cell Carcinoma of the Ovary, Hypercalcemic Type Cells by Inhibition of EZH2: In Vitro and In Vivo Preclinical Models, Mol. Cancer Ther, vol.16, pp.850-860, 2017.

M. J. Smith, J. O'sullivan, S. S. Bhaskar, K. D. Hadfield, G. Poke et al., Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas, Nat. Genet, vol.45, pp.295-298, 2013.

M. J. Smith, A. J. Wallace, C. Bennett, M. Hasselblatt, E. Elert-dobkowska et al., Germline SMARCE1 mutations predispose to both spinal and cranial clear cell meningiomas, J. Pathol, vol.234, pp.436-440, 2014.

E. H. Gerkes, J. M. Fock, W. F. Den-dunnen, M. J. Van-belzen, C. A. Van-der-lans et al., Olderode-Berends, A heritable form of SMARCE1-related meningiomas with important implications for follow-up and family screening, Neurogenetics, vol.17, pp.83-89, 2016.

C. Guichard, G. Amaddeo, S. Imbeaud, Y. Ladeiro, L. Pelletier et al., Integrated analysis of somatic mutations and focal copynumber changes identifies key genes and pathways in hepatocellular carcinoma, Nat. Genet, vol.44, pp.694-698, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00719917

J. Huang, Q. Deng, Q. Wang, K. Li, J. Dai et al., Exome sequencing of hepatitis B virus-associated hepatocellular carcinoma, Nat. Genet, vol.44, pp.1117-1121, 2012.

K. Wang, S. T. Yuen, J. Xu, S. P. Lee, H. H. Yan et al., Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer, Nat. Genet, vol.46, pp.573-582, 2014.

Z. J. Zang, I. Cutcutache, S. L. Poon, S. L. Zhang, J. R. Mcpherson et al., Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes, Nat. Genet, vol.44, pp.570-574, 2012.

K. Wang, J. Kan, S. T. Yuen, S. T. Shi, K. M. Chu et al., Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer, Nat. Genet, vol.43, pp.1219-1223, 2011.

Y. Gui, G. Guo, Y. Huang, X. Hu, A. Tang et al., Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder, Nat. Genet, vol.43, pp.875-878, 2011.

G. Guo, X. Sun, C. Chen, S. Wu, P. Huang et al., Whole-genome and whole-exome sequencing of bladder cancer identifies frequent alterations in genes involved in sister chromatid cohesion and segregation, Nat. Genet, vol.45, pp.1459-1463, 2013.

Y. Jiao, T. M. Pawlik, R. A. Anders, F. M. Selaru, M. M. Streppel et al., Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas, Nat. Genet, vol.45, pp.1470-1473, 2013.

S. Jones, T. Wang, I. Shih, T. Mao, K. Nakayama et al., Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma, Science, vol.330, pp.228-231, 2010.

B. A. Goff, R. Sainz-de-la-cuesta, H. G. Muntz, D. Fleischhacker, M. Ek et al., Clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy in stage III disease, Gynecol. Oncol, vol.60, pp.412-417, 1996.

T. Sugiyama, T. Kamura, J. Kigawa, N. Terakawa, Y. Kikuchi et al., Clinical characteristics of clear cell carcinoma of the ovary: a distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy, Cancer, vol.88, pp.2584-2589, 2000.

D. R. Crotzer, C. C. Sun, R. L. Coleman, J. K. Wolf, C. F. Levenback et al., Lack of effective systemic therapy for recurrent clear cell carcinoma of the ovary, Gynecol. Oncol, vol.105, pp.404-408, 2007.

M. L. Gallo, A. J. O'hara, M. L. Rudd, M. E. Urick, N. F. Hansen et al., Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes, NIH Intramural Sequencing Center (NISC) Comparative Sequencing Program, vol.44, pp.1310-1315, 2012.

M. Sausen, R. J. Leary, S. Jones, J. Wu, C. P. Reynolds et al., Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma, Nat. Genet, vol.45, pp.12-17, 2013.

S. S. Kim, M. S. Kim, N. J. Yoo, and S. H. Lee, Frameshift mutations of a chromatin-remodeling gene SMARCC2 in gastric and colorectal cancers with microsatellite instability, APMIS Acta Pathol. Microbiol. Immunol. Scand, vol.121, pp.168-169, 2013.

R. S. Lee and C. W. Roberts, Linking the SWI/SNF complex to prostate cancer, Nat. Genet, vol.45, pp.1268-1269, 2013.

J. R. Prensner, M. K. Iyer, A. Sahu, I. A. Asangani, Q. Cao et al., The long noncoding RNA SChLAP1 promotes aggressive prostate cancer and antagonizes the SWI/SNF complex, Nat. Genet, vol.45, pp.1392-1398, 2013.

Y. Wang, L. He, Y. Du, P. Zhu, G. Huang et al., The long noncoding RNA lncTCF7 promotes self-renewal of human liver cancer stem cells through activation of Wnt signaling, Cell Stem Cell, vol.16, pp.413-425, 2015.

G. M. Euskirchen, R. K. Auerbach, E. Davidov, T. A. Gianoulis, G. Zhong et al., Diverse Roles and Interactions of the SWI/SNF Chromatin Remodeling Complex Revealed Using Global Approaches, PLOS Genet, vol.7, p.1002008, 2011.

S. Balasubramaniam, C. E. Comstock, A. Ertel, K. W. Jeong, M. R. Stallcup et al., Aberrant BAF57 signaling facilitates prometastatic phenotypes, vol.19, pp.2657-2667, 2013.

S. Kagami, T. Kurita, T. Kawagoe, N. Toki, Y. Matsuura et al., Prognostic significance of BAF57 expression in patients with endometrial carcinoma, Histol. Histopathol, vol.27, pp.593-599, 2012.

Y. Wang, S. Y. Chen, A. N. Karnezis, S. Colborne, N. D. Santos et al., The histone methyltransferase EZH2 is a therapeutic target in small cell carcinoma of the ovary, hypercalcemic type, J. Pathol, 2017.

C. M. Fillmore, C. Xu, P. T. Desai, J. M. Berry, S. P. Rowbotham et al., EZH2 inhibition sensitizes BRG1 and EGFR mutant lung tumours to TopoII inhibitors, Nature, vol.520, pp.239-242, 2015.

E. C. Dykhuizen, D. C. Hargreaves, E. L. Miller, K. Cui, A. Korshunov et al., BAF complexes facilitate decatenation of DNA by topoisomerase II?, Nature, vol.497, pp.624-627, 2013.

I. Oruetxebarria, F. Venturini, T. Kekarainen, A. Houweling, L. M. Zuijderduijn et al., P16INK4a is required for hSNF5 chromatin remodelerinduced cellular senescence in malignant rhabdoid tumor cells, J. Biol. Chem, vol.279, pp.3807-3816, 2004.

R. G. Vries, V. Bezrookove, L. M. Zuijderduijn, S. K. Kia, A. Houweling et al., Cancer-associated mutations in chromatin remodeler hSNF5 promote chromosomal instability by compromising the mitotic checkpoint, Genes Dev, vol.19, pp.665-670, 2005.

B. Geoerger, F. Bourdeaut, S. G. Dubois, M. Fischer, J. I. Geller et al., A Phase I Study of the CDK4/6 Inhibitor Ribociclib (LEE011) in Pediatric Patients with Malignant Rhabdoid Tumors, Neuroblastoma, and Other Solid Tumors, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.23, pp.2433-2441, 2017.

B. G. Wilson, K. C. Helming, X. Wang, Y. Kim, F. Vazquez et al., Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation, Mol. Cell. Biol, vol.34, pp.1136-1144, 2014.

D. N. Reisman, J. Sciarrotta, W. Wang, W. K. Funkhouser, and B. E. Weissman, Loss of BRG1/BRM in human lung cancer cell lines and primary lung cancers: correlation with poor prognosis, Cancer Res, vol.63, pp.560-566, 2003.

A. Agaimy, F. Fuchs, E. A. Moskalev, H. Sirbu, A. Hartmann et al., SMARCA4-deficient pulmonary adenocarcinoma: clinicopathological, immunohistochemical, and molecular characteristics of a novel aggressive neoplasm with a consistent TTF1(neg)/CK7(pos)/HepPar-1(pos) immunophenotype, Virchows Arch, 2017.

N. Pottier, W. Yang, M. Assem, J. C. Panetta, D. Pei et al., The SWI/SNF chromatin-remodeling complex and glucocorticoid resistance in acute lymphoblastic leukemia, J. Natl. Cancer Inst, vol.100, pp.1792-1803, 2008.

T. Yamaguchi, T. Kurita, K. Nishio, J. Tsukada, T. Hachisuga et al., Expression of BAF57 in ovarian cancer cells and drug sensitivity, Cancer Sci, vol.106, pp.359-366, 2015.

A. I. Papadakis, C. Sun, T. A. Knijnenburg, Y. Xue, W. Grernrum et al., SMARCE1 suppresses EGFR expression and controls responses to MET and ALK inhibitors in lung cancer, Cell Res, vol.25, pp.445-458, 2015.

C. W. Roberts, S. A. Galusha, M. E. Mcmenamin, C. D. Fletcher, and S. H. Orkin, Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.13796-13800, 2000.

Q. Liu, S. Galli, R. Srinivasan, W. M. Linehan, M. Tsokos et al., Renal medullary carcinoma: molecular, immunohistochemistry, and morphologic correlation, Am. J. Surg. Pathol, vol.37, pp.368-374, 2013.

S. T. Sredni and T. Tomita, Rhabdoid Tumor Predisposition Syndrome, Pediatr. Dev. Pathol, vol.18, pp.49-58, 2015.

B. C. Mobley, J. K. Mckenney, C. D. Bangs, K. Callahan, K. W. Yeom et al., Loss of SMARCB1/INI1 expression in poorly differentiated chordomas, Acta Neuropathol. (Berl.), vol.120, pp.745-753, 2010.

A. Agaimy, M. Koch, M. Lell, S. Semrau, W. Dudek et al., SMARCB1(INI1)-deficient sinonasal basaloid carcinoma: a novel member of the expanding family of SMARCB1-deficient neoplasms, Am. J. Surg. Pathol, vol.38, pp.1274-1281, 2014.

P. Ramos, A. N. Karnezis, D. W. Craig, A. Sekulic, M. L. Russell et al., Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4, Nat. Genet, vol.46, pp.427-429, 2014.

L. Witkowski, E. Lalonde, J. Zhang, S. Albrecht, N. Hamel et al., Familial rhabdoid tumour 'avant la lettre'--from pathology review to exome sequencing and back again, J. Pathol, vol.231, pp.35-43, 2013.

H. Liang, L. W. Cheung, J. Li, Z. Ju, S. Yu et al., Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer, Genome Res, vol.22, pp.2120-2129, 2012.

S. Jones, M. Li, D. W. Parsons, X. Zhang, J. Wesseling et al., Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types, Hum. Mutat, vol.33, pp.100-103, 2012.

A. Mamo, L. Cavallone, S. Tuzmen, C. Chabot, C. Ferrario et al., An integrated genomic approach identifies ARID1A as a candidate tumor-suppressor gene in breast cancer, Oncogene, vol.31, pp.2090-2100, 2012.

S. Cornen, J. Adelaide, F. Bertucci, P. Finetti, A. Guille et al., Mutations and deletions of ARID1A in breast tumors, Oncogene, vol.31, pp.4255-4256, 2012.

G. Manceau, E. Letouzé, C. Guichard, A. Didelot, A. Cazes et al., Recurrent inactivating mutations of ARID2 in non-small cell lung carcinoma, Int. J. Cancer, vol.132, pp.2217-2221, 2013.

W. Xia, S. Nagase, A. G. Montia, S. M. Kalachikov, M. Keniry et al., BAF180 is a critical regulator of p21 induction and a tumor suppressor mutated in breast cancer, Cancer Res, vol.68, pp.1667-1674, 2008.

I. Varela, P. Tarpey, K. Raine, D. Huang, C. K. Ong et al., Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma, Nature, vol.469, pp.539-542, 2011.

K. De-keersmaecker, P. J. Real, G. D. Gatta, T. Palomero, M. L. Sulis et al., The TLX1 oncogene drives aneuploidy in T cell transformation, Nat. Med, vol.16, pp.1321-1327, 2010.

R. Berger, N. Dastugue, M. Busson, J. Van-den, C. Akker et al., Groupe Français de Cytogénétique Hématologique (GFCH), t(5;14)/HOX11L2-positive T-cell acute lymphoblastic leukemia. A collaborative study of the Groupe Français de Cytogénétique Hématologique (GFCH), Leukemia, vol.17, pp.1851-1857, 2003.