T. R. Lappin, D. G. Grier, A. Thompson, and H. L. Halliday, HOX genes: seductive science, mysterious mechanisms. The Ulster medical journal, vol.75, p.1891803, 2006.

M. Mallo, D. M. Wellik, and J. Deschamps, Hox genes and regional patterning of the vertebrate body plan, Developmental biology, vol.344, issue.1, pp.7-15, 2010.

P. Central and P. , , p.2909379

D. M. Wellik, Hox genes and kidney development, Pediatr Nephrol, vol.26, issue.9, pp.1559-65, 2011.

B. Xu and D. M. Wellik, Axial Hox9 activity establishes the posterior field in the developing forelimb. Proceedings of the National Academy of Sciences of the United States of America, vol.108, p.3064354, 2011.

D. Foronda, L. F. De-navas, D. L. Garaulet, and E. Sanchez-herrero, Function and specificity of Hox genes. The International journal of developmental biology, vol.53, pp.1404-1423, 2009.

R. Rezsohazy, A. J. Saurin, C. Maurel-zaffran, and Y. Graba, Cellular and molecular insights into Hox protein action, Development, vol.142, issue.7, pp.1212-1239, 2015.

R. Rezsohazy, Non-transcriptional interactions of Hox proteins: inventory, facts, and future directions, vol.243, pp.117-148, 2014.

F. Chen and M. R. Capecchi, Targeted mutations in hoxa-9 and hoxb-9 reveal synergistic interactions, Developmental biology, vol.181, issue.2, pp.186-96, 1997.

D. C. Mcintyre, S. Rakshit, A. R. Yallowitz, L. Loken, L. Jeannotte et al., Hox patterning of the vertebrate rib cage, Development, vol.134, issue.16, pp.2981-2990, 2007.

M. C. Magli, C. Largman, and H. J. Lawrence, Effects of HOX homeobox genes in blood cell differentiation, Journal of cellular physiology, vol.173, issue.2, p.9365517, 1997.

F. Chen and M. R. Capecchi, Paralogous mouse Hox genes, Hoxa9, Hoxb9, and Hoxd9, function together to control development of the mammary gland in response to pregnancy, Proceedings of the National Academy of Sciences of the United States of America, vol.96, p.15172, 1999.

S. Chambeyron, D. Silva, N. R. Lawson, K. A. Bickmore, and W. A. , Nuclear re-organisation of the Hoxb complex during mouse embryonic development, Development, vol.132, issue.9, pp.2215-2238, 2005.

R. A. Conlon and J. Rossant, Exogenous retinoic acid rapidly induces anterior ectopic expression of murine Hox-2 genes in vivo, Development, vol.116, issue.2, pp.357-68, 1992.

C. Van-rooijen, S. Simmini, M. Bialecka, R. Neijts, C. Van-de-ven et al., Evolutionarily conserved requirement of Cdx for post-occipital tissue emergence, Development, vol.139, issue.14, pp.2576-83, 2012.

A. M. Ledgard, R. S. Lee, and A. J. Peterson, Expression of genes associated with allantois emergence in ovine and bovine conceptuses. Molecular reproduction and development, vol.73, pp.1084-93, 2006.

I. Hue, D. Evain-brion, T. Fournier, and S. A. Degrelle, Primary Bovine Extra-Embryonic Cultured Cells: A New Resource for the Study of In Vivo Peri-Implanting Phenotypes and Mesoderm Formation, PloS one, vol.10, issue.6, p.127330, 2015.

M. Vejlsted, B. Avery, M. Schmidt, T. Greve, N. Alexopoulos et al., Ultrastructural and immunohistochemical characterization of the bovine epiblast, Biology of reproduction, vol.72, issue.3, pp.678-86, 2005.

M. Vejlsted, Y. Du, G. Vajta, and P. Maddox-hyttel, Post-hatching development of the porcine and bovine embryo-defining criteria for expected development in vivo and in vitro, Theriogenology, vol.65, issue.1, pp.153-65, 2006.

A. Jedrusik, D. E. Parfitt, G. Guo, M. Skamagki, J. B. Grabarek et al., Role of Cdx2 and cell polarity in cell allocation and specification of trophectoderm and inner cell mass in the mouse embryo

, Genes & development, vol.22, pp.2692-706, 2008.

D. Strumpf, C. A. Mao, Y. Yamanaka, A. Ralston, K. Chawengsaksophak et al., Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development, vol.132, pp.2093-102, 2005.

J. Artus and C. Chazaud, A close look at the mammalian blastocyst: epiblast and primitive endoderm formation, Cellular and molecular life sciences: CMLS, vol.71, issue.17, pp.3327-3365, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01923166

E. W. Kuijk, L. T. Van-tol, H. Van-de-velde, R. Wubbolts, M. Welling et al., The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos, Development, vol.139, issue.5, pp.871-82, 2012.

, PubMed Central

E. W. Kuijk, D. Puy, L. Van-tol, H. T. Oei, C. H. Haagsman et al., Differences in early lineage segregation between mammals. Developmental dynamics: an official publication of the American Association of Anatomists, vol.237, pp.918-945, 2008.

S. Pfister, K. A. Steiner, and P. P. Tam, Gene expression pattern and progression of embryogenesis in the immediate post-implantation period of mouse development. Gene expression patterns: GEP, vol.7, pp.558-73, 2007.

C. Chazaud, Y. Yamanaka, T. Pawson, and J. Rossant, Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway, Developmental cell, vol.10, issue.5, pp.615-639, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01923174

A. H. El-hashash, D. Warburton, and S. J. Kimber, Genes and signals regulating murine trophoblast cell development, Mechanisms of development, vol.127, issue.1-2, p.2865247, 2010.

K. Q. Cai, C. D. Capo-chichi, M. E. Rula, D. H. Yang, and X. X. Xu, Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis. Developmental dynamics: an official publication of the American Association of Anatomists, vol.237, pp.2820-2829, 2008.

Y. Saga, S. Miyagawa-tomita, A. Takagi, S. Kitajima, J. Miyazaki et al., MesP1 is expressed in the heart precursor cells and required for the formation of a single heart tube, Development, vol.126, issue.15, pp.3437-3484, 1999.

D. Solter, I. Damjanov, and N. Skreb, Ultrastructure of mouse egg-cylinder, Zeitschrift fur Anatomie und Entwicklungsgeschichte, vol.132, issue.4, pp.291-299, 1970.

A. C. Enders, R. L. Given, and S. Schlafke, Differentiation and migration of endoderm in the rat and mouse at implantation. The Anatomical record, vol.190, pp.65-77, 1978.

M. Bielinska, N. Narita, and D. B. Wilson, Distinct roles for visceral endoderm during embryonic mouse development. The International journal of developmental biology, vol.43, pp.183-205, 1999.

O. Bernard, M. A. Ripoche, and D. Bennett, Distribution of maternal immunoglobulins in the mouse uterus and embryo in the days after implantation. The Journal of experimental medicine, vol.145, p.2180582, 1977.

F. Rachman, V. Casimiri, and O. Bernard, Maternal immunoglobulins G, A and M in mouse uterus and embryo during the postimplantation period, Journal of reproductive immunology, vol.6, issue.1, pp.39-47, 1984.

S. Takasuga, Y. Horie, J. Sasaki, G. H. Sun-wada, N. Kawamura et al., Critical roles of type III phosphatidylinositol phosphate kinase in murine embryonic visceral endoderm and adult intestine, PubMed Central PMCID: PMC3562790. HOXB9 in Early Embryonic Development PLOS ONE, vol.110, pp.1726-1757, 2013.

M. C. Wallingford and C. M. Giachelli, Loss of PiT-1 results in abnormal endocytosis in the yolk sac visceral endoderm, Mechanisms of development, vol.133, p.4207432, 2014.

K. E. Inman and K. M. Downs, Localization of Brachyury (T) in embryonic and extraembryonic tissues during mouse gastrulation, Gene expression patterns: GEP, vol.6, issue.8, pp.783-93, 2006.

B. L. Hogan and R. Tilly, Cell interactions and endoderm differentiation in cultured mouse embryos, Journal of embryology and experimental morphology, vol.62, pp.379-94, 1981.

S. A. Degrelle, E. Campion, C. Cabau, F. Piumi, P. Reinaud et al., Molecular evidence for a critical period in mural trophoblast development in bovine blastocysts, Developmental biology, vol.288, issue.2, pp.448-60, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-02440263

N. Chiba, V. Comaills, B. Shiotani, F. Takahashi, T. Shimada et al., Homeobox B9 induces epithelial-to-mesenchymal transition-associated radioresistance by accelerating DNA damage responses, Proceedings of the National Academy of Sciences of the United States of America, 2012.

, , vol.109, p.3286905

I. Topisirovic, A. Kentsis, J. M. Perez, M. L. Guzman, C. T. Jordan et al., Eukaryotic translation initiation factor 4E activity is modulated by HOXA9 at multiple levels, Mol Cell Biol, vol.25, issue.3, pp.1100-1112, 2005.

L. Bridoux, I. Bergiers, A. Draime, M. Halbout, N. Deneyer et al., KPC2 relocalizes HOXA2 to the cytoplasm and decreases its transcriptional activity, Biochimica et biophysica acta, vol.1849, issue.10, pp.1298-311, 2015.

A. Jedrusik, A. W. Bruce, M. H. Tan, D. E. Leong, M. Skamagki et al., Maternally and zygotically provided Cdx2 have novel and critical roles for early development of the mouse embryo, Developmental biology, vol.344, issue.1, p.2954319, 2010.

L. Li, P. Zheng, and J. Dean, Maternal control of early mouse development, Development, vol.137, issue.6, p.2834456, 2010.

M. Keramari, J. Razavi, K. A. Ingman, C. Patsch, F. Edenhofer et al., Sox2 is essential for formation of trophectoderm in the preimplantation embryo, PloS one, vol.5, issue.11, p.2980489, 2010.

G. Coticchio, M. Dal-canto, M. Renzini, M. Guglielmo, M. C. Brambillasca et al., Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Human reproduction update, vol.21, pp.427-54, 2015.

T. Hayashida, F. Takahashi, N. Chiba, E. Brachtel, M. Takahashi et al., HOXB9, a gene overexpressed in breast cancer, promotes tumorigenicity and lung metastasis, Proceedings of the National Academy of Sciences of the United States of America, vol.107, issue.3, p.2824265, 2010.

L. Sha, L. Dong, L. Lv, L. Bai, and J. X. , HOXB9 promotes epithelial-to-mesenchymal transition via transforming growth factor-beta1 pathway in hepatocellular carcinoma cells. Clinical and experimental medicine, vol.15, pp.55-64, 2015.

J. Zhan, M. Niu, P. Wang, X. Zhu, S. Li et al., Elevated HOXB9 expression promotes differentiation and predicts a favourable outcome in colon adenocarcinoma patients, British journal of cancer, vol.111, issue.5, p.4150282, 2014.

M. Myers and S. A. Pangas, Regulatory roles of transforming growth factor beta family members in folliculogenesis. Wiley interdisciplinary reviews Systems biology and medicine, vol.2, pp.117-142, 2010.

M. Ozawa, M. Sakatani, J. Yao, S. Shanker, F. Yu et al., Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst, BMC developmental biology, vol.12, p.3514149, 2012.

S. M. Hosseini, I. Dufort, J. Caballero, F. Moulavi, H. R. Ghanaei et al., Transcriptome profiling of bovine inner cell mass and trophectoderm derived from in vivo generated blastocysts. BMC developmental biology, vol.15, p.4683974, 2015.

E. C. Tsark, E. D. Adamson, G. E. Withers, and L. M. Wiley, Expression and function of amphiregulin during murine preimplantation development. Molecular reproduction and development, vol.47, pp.271-83, 1997.

J. H. Lee, E. Lee, D. Biswas, C. S. Jeung, G. S. Lee et al., Amphiregulin promotes the proliferation of trophoblast cells during preimplantation development of porcine embryos, Theriogenology, 2009.

, , pp.1023-1054

H. G. Slager, K. A. Lawson, A. J. Van-den-eijnden-van-raaij, S. W. De-laat, and C. L. Mummery, Differential localization of TGF-beta 2 in mouse preimplantation and early postimplantation development. Developmental biology, vol.145, pp.205-223, 1991.

B. C. Paria, K. L. Jones, K. C. Flanders, and S. K. Dey, Localization and binding of transforming growth factorbeta isoforms in mouse preimplantation embryos and in delayed and activated blastocysts. Developmental biology, vol.151, pp.91-104, 1992.

A. Gupta, F. W. Bazer, and L. A. Jaeger, Differential expression of beta transforming growth factors (TGF beta 1, TGF beta 2, and TGF beta 3) and their receptors (type I and type II) in peri-implantation porcine conceptuses, Biology of reproduction, vol.55, issue.4, pp.796-802, 1996.

S. R. Ravelich, A. N. Shelling, D. N. Wells, A. J. Peterson, R. S. Lee et al., Expression of TGF-beta1, TGF-beta2, TGF-beta3 and the receptors TGF-betaRI and TGF-betaRII in placentomes of artificially inseminated and nuclear transfer derived bovine pregnancies, Placenta, vol.27, issue.2-3, pp.307-323, 2006.

L. Munson, A. Wilhite, V. F. Boltz, and J. E. Wilkinson, Transforming growth factor beta in bovine placentas, Biology of reproduction, vol.55, issue.4, pp.748-55, 1996.

L. C. Barcroft, A. Hay-schmidt, A. Caveney, E. Gilfoyle, E. W. Overstrom et al., Trophectoderm differentiation in the bovine embryo: characterization of a polarized epithelium, vol.114, pp.327-366, 1998.

J. J. Goval, A. Van-cauwenberge, and H. Alexandre, Respective roles of protein tyrosine kinases and protein kinases C in the upregulation of beta-catenin distribution, and compaction in mouse preimplantation embryos: a pharmacological approach, Biol Cell, vol.92, issue.7, pp.513-539, 2000.

M. Ohsugi, S. Y. Hwang, S. Butz, B. B. Knowles, D. Solter et al., Expression and cell membrane localization of catenins during mouse preimplantation development. Developmental dynamics: an official publication of the American Association of Anatomists, vol.206, pp.391-402, 1996.

D. Vries, W. N. Evsikov, A. V. Haac, B. E. Fancher, K. S. Holbrook et al., Maternal beta-catenin and E-cadherin in mouse development, Development, vol.131, issue.18, pp.4435-4480, 2004.

L. Larue, M. Ohsugi, J. Hirchenhain, and R. Kemler, E-cadherin null mutant embryos fail to form a trophectoderm epithelium, Proceedings of the National Academy of Sciences of the United States of America, vol.91, issue.17, p.44586, 1994.

M. Ohsugi, L. Larue, H. Schwarz, and R. Kemler, Cell-junctional and cytoskeletal organization in mouse blastocysts lacking E-cadherin, Developmental biology, vol.185, issue.2, pp.261-71, 1997.

N. G. Kan, M. P. Stemmler, D. Junghans, B. Kanzler, W. N. De-vries et al., Gene replacement reveals a specific role for E-cadherin in the formation of a functional trophectoderm, Development, vol.134, issue.1, pp.31-41, 2007.

R. O. Stephenson, Y. Yamanaka, and J. Rossant, Disorganized epithelial polarity and excess trophectoderm cell fate in preimplantation embryos lacking E-cadherin, Development, vol.137, issue.20, pp.3383-91, 2010.

S. J. Kimber, J. Bentley, M. Ciemerych, C. J. Moller, and E. Bock, Expression of N-CAM in fertilized pre-and periimplantation and parthenogenetically activated mouse embryos, Eur J Cell Biol, vol.63, issue.1, pp.102-115, 1994.

D. K. Berg, C. S. Smith, D. J. Pearton, D. N. Wells, R. Broadhurst et al., Trophectoderm lineage determination in cattle, Developmental cell, vol.20, issue.2, pp.244-55, 2011.

E. Van-den-akker, S. Forlani, K. Chawengsaksophak, W. De-graaff, F. Beck et al., Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development, vol.129, pp.2181-93, 2002.

V. P. Rawat, S. Thoene, V. M. Naidu, N. Arseni, B. Heilmeier et al., Overexpression of CDX2 perturbs HOX gene expression in murine progenitors depending on its N-terminal domain and is closely correlated with deregulated HOX gene expression in human acute myeloid leukemia, Blood, vol.111, issue.1, pp.309-328, 2008.

L. S. Amesse, R. Moulton, Y. M. Zhang, and T. Pfaff-amesse, Expression of HOX gene products in normal and abnormal trophoblastic tissue, Gynecologic oncology, vol.90, issue.3, pp.512-520, 2003.

H. Murasawa, R. Takashima, K. Yamanouchi, H. Tojo, and C. Tachi, Comparative analysis of HOXC-9 gene expression in murine hemochorial and caprine synepitheliochorial placentae by in situ hybridization, The Anatomical record, vol.259, issue.4, pp.383-94, 2000.

R. Takashima, K. Yamanouchi, H. Tojo, and C. Tachi, Survey of Homeobox Genes Expressed in Hemochorial Placentae of Mice (Mus musculus) and in Epitheliochorial/Syndesmochorial Placentae of Shiba Goats (Capra hircus var. Shiba) Journal of reproduction and development, vol.45, pp.363-74, 1999.

Y. M. Zhang, B. Xu, N. Rote, L. Peterson, and L. S. Amesse, Expression of homeobox gene transcripts in trophoblastic cells, American journal of obstetrics and gynecology, vol.187, issue.1, pp.24-32, 2002.

D. Hu and J. C. Cross, Development and function of trophoblast giant cells in the rodent placenta. The International journal of developmental biology, vol.54, pp.341-54, 2010.

A. T. Peter, Bovine placenta: a review on morphology, components, and defects from terminology and clinical perspectives, Theriogenology, vol.80, issue.7, pp.693-705, 2013.

M. D. Mitchell, H. N. Peiris, M. Kobayashi, Y. Q. Koh, G. Duncombe et al., Placental exosomes in normal and complicated pregnancy, American journal of obstetrics and gynecology, vol.213, issue.4, pp.173-81, 2015.

D. S. Choi, J. O. Park, S. C. Jang, Y. J. Yoon, J. W. Jung et al., Proteomic analysis of microvesicles derived from human colorectal cancer ascites, Proteomics, vol.11, issue.13, pp.2745-51, 2011.

B. S. Hong, J. H. Cho, H. Kim, E. J. Choi, S. Rho et al., Colorectal cancer cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells. BMC genomics, vol.10, p.2788585, 2009.

Y. Wada, Vacuoles in mammals: a subcellular structure indispensable for early embryogenesis, Bioarchitecture, vol.3, issue.1, p.3639239, 2013.

N. Kawamura, G. H. Sun-wada, M. Aoyama, A. Harada, S. Takasuga et al., Delivery of endosomes to lysosomes via microautophagy in the visceral endoderm of mouse embryos, Nature communications, vol.3, p.1071, 2012.

M. E. Maurer and J. A. Cooper, Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein, Journal of cell science, vol.118, pp.5345-55, 2005.

D. H. Yang, E. R. Smith, I. H. Roland, Z. Sheng, J. He et al., Disabled-2 is essential for endodermal cell positioning and structure formation during mouse embryogenesis, Developmental biology, vol.251, issue.1, pp.27-44, 2002.

M. Scotti and M. Kmita, Recruitment of 5' Hoxa genes in the allantois is essential for proper extra-embryonic function in placental mammals, Development, vol.139, issue.4, p.4508127, 2012.

K. Chawengsaksophak, W. De-graaff, J. Rossant, J. Deschamps, and F. Beck, Cdx2 is essential for axial elongation in mouse development, Proceedings of the National Academy of Sciences of the United States of America, vol.101, issue.20, pp.7641-7646, 2004.

P. Central and P. , , p.419659