C. A. Arndt and W. M. Crist, Common musculoskeletal tumors of childhood and adolescence. The New England journal of medicine, vol.341, pp.342-352, 1999.

J. Potratz, U. Dirksen, H. Jurgens, and A. Craft, Ewing sarcoma: clinical state-of-the-art. Pediatric hematology and oncology, vol.29, pp.1-11, 2012.

M. Tsokos, R. D. Alaggio, L. P. Dehner, and P. S. Dickman, Ewing sarcoma/peripheral primitive neuroectodermal tumor and related tumors. Pediatric and developmental pathology, vol.15, pp.108-126, 2012.

O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, pp.162-165, 1992.

W. A. May, S. L. Lessnick, B. S. Braun, M. Klemsz, B. C. Lewis et al., The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1, Molecular and Cellular Biology, vol.13, pp.7393-7398, 1993.

K. Tanaka, T. Iwakuma, K. Harimaya, H. Sato, and Y. Iwamoto, EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells, The Journal of clinical investigation, vol.99, pp.239-247, 1997.

J. A. Toretsky, Y. Connell, L. Neckers, and N. K. Bhat, Inhibition of EWS-FLI-1 fusion protein with antisense oligodeoxynucleotides, J Neurooncol, vol.31, pp.9-16, 1997.

H. Kovar, D. N. Aryee, G. Jug, C. Henockl, M. Schemper et al., EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro, Cell Growth Differ, vol.7, pp.429-437, 1996.

A. Maksimenko, G. Lambert, J. R. Bertrand, E. Fattal, P. Couvreur et al., Therapeutic potentialities of EWS-Fli-1 mRNA-targeted vectorized antisense oligonucleotides, Ann N Y Acad Sci, vol.1002, pp.72-77, 2003.

M. Ouchida, T. Ohno, Y. Fujimura, R. Vn, and E. S. Reddy, Loss of tumorigenicity of Ewing's sarcoma cells expressing antisense RNA to EWS-fusion transcripts, Oncogene, vol.11, pp.1049-1054, 1995.

H. A. Chansky, F. Barahmand-pour, Q. Mei, W. Kahn-farooqi, A. Zielinska-kwiatkowska et al., Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing's sarcoma cells in vitro, J Orthop Res, vol.22, pp.910-917, 2004.

T. Dohjima, N. S. Lee, H. Li, T. Ohno, and J. J. Rossi, Small interfering RNAs expressed from a Pol III promoter suppress the EWS/Fli-1 transcript in an Ewing sarcoma cell line, Mol Ther, vol.7, pp.811-816, 2003.

H. Kovar, J. Ban, and S. Pospisilova, Potentials for RNAi in sarcoma research and therapy: Ewing's sarcoma as a model, Semin Cancer Biol, vol.13, pp.275-281, 2003.

D. B. Denny and C. T. , Loss of p16 pathways stabilizes EWS/FLI1 expression and complements EWS/FLI1 mediated transformation, Oncogene, vol.20, pp.6731-6741, 2001.

S. L. Lessnick, C. S. Dacwag, and T. R. Golub, The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent www.impactjournals.com/oncotarget growth arrest in primary human fibroblasts, Cancer cell, vol.1, pp.393-401, 2002.

E. J. Sohn, H. Li, K. Reidy, L. F. Beers, B. L. Christensen et al., EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo, Cancer research, vol.70, pp.1154-1163, 2010.

N. Riggi, L. Cironi, P. Provero, M. L. Suva, K. Kaloulis et al., Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells, Cancer research, vol.65, pp.11459-11468, 2005.

N. Riggi, M. L. Suva, D. Suva, L. Cironi, P. Provero et al., EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells, Cancer research, vol.68, pp.2176-2185, 2008.

Y. Castillero-trejo, S. Eliazer, L. Xiang, J. A. Richardson, and R. L. Ilaria, Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, ewing sarcoma-like tumors, Cancer research, vol.65, pp.8698-8705, 2005.

C. Von-levetzow, X. Jiang, Y. Gwye, G. Von-levetzow, H. L. Cooper et al., Modeling initiation of Ewing sarcoma in human neural crest cells, Plos One, vol.6, p.19305, 2011.

M. Tanaka, Y. Yamazaki, Y. Kanno, K. Igarashi, K. Aisaki et al., Ewing's sarcoma precursors are highly enriched in embryonic osteochondrogenic progenitors, The Journal of clinical investigation, vol.124, pp.3061-3074, 2014.

C. De-giovanni, L. Landuzzi, G. Nicoletti, P. L. Lollini, and N. P. , Molecular and cellular biology of rhabdomyosarcoma, Future Oncol, vol.5, pp.1449-1475, 2009.

M. Haldar, R. L. Randall, and M. R. Capecchi, Synovial sarcoma: from genetics to genetic-based animal modeling, Clinical orthopaedics and related research, vol.466, pp.2156-2167, 2008.

C. Keller, B. R. Arenkiel, C. M. Coffin, N. El-bardeesy, R. A. Depinho et al., Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function, Genes Dev, vol.18, pp.2614-2626, 2004.

E. Charytonowicz, M. Terry, K. Coakley, L. Telis, F. Remotti et al., PPARgamma agonists enhance ET-743-induced adipogenic differentiation in a transgenic mouse model of myxoid round cell liposarcoma, The Journal of clinical investigation, vol.122, pp.886-898, 2012.

K. Yamada, T. Ohno, H. Aoki, K. Semi, A. Watanabe et al., EWS/ ATF1 expression induces sarcomas from neural crestderived cells in mice, The Journal of clinical investigation, vol.123, pp.600-610, 2013.

M. Haldar, J. D. Hancock, C. M. Coffin, S. L. Lessnick, and M. R. Capecchi, A conditional mouse model of synovial sarcoma: insights into a myogenic origin, Cancer cell, vol.11, pp.375-388, 2007.

P. P. Lin, M. K. Pandey, J. F. Xiong, S. Deavers, M. Parant et al., EWS-FLI1 induces developmental abnormalities and accelerates sarcoma formation in a transgenic mouse model, Cancer research, vol.68, pp.8968-8975, 2008.

E. C. Torchia, K. Boyd, J. E. Rehg, C. Qu, and S. J. Baker, EWS/ FLI-1 induces rapid onset of myeloid/erythroid leukemia in mice, Molecular and cellular biology, vol.27, pp.7918-7934, 2007.

M. Tanaka, S. Yamaguchi, Y. Yamazaki, H. Kinoshita, K. Kuwahara et al., Somatic chromosomal translocation between Ewsr1 and Fli1 loci leads to dilated cardiomyopathy in a mouse model, Sci Rep, vol.5, p.7826, 2015.

H. V. Erkizan, Y. Kong, M. Merchant, S. Schlottmann, J. S. Barber-rotenberg et al., A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma, Nature medicine, vol.15, pp.750-756, 2009.

E. M. Beauchamp, L. Ringer, G. Bulut, K. P. Sajwan, M. D. Hall et al., Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway, The Journal of clinical investigation, vol.121, pp.148-160, 2011.

S. W. Leacock, A. N. Basse, G. L. Chandler, A. M. Kirk, D. Rakheja et al., A zebrafish transgenic model of Ewing's sarcoma reveals conserved mediators of EWS-FLI1 tumorigenesis, Disease models & mechanisms, vol.5, pp.95-106, 2012.

J. H. Jeong, J. S. Jin, H. N. Kim, S. M. Kang, J. C. Liu et al., Expression of Runx2 transcription factor in non-skeletal tissues, sperm and brain, J Cell Physiol, vol.217, pp.511-517, 2008.

A. Rauch, S. Seitz, U. Baschant, A. F. Schilling, A. Illing et al., Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor, Cell Metab, vol.11, pp.517-531, 2010.

F. Tirode, D. Surdez, X. Ma, M. Parker, L. Deley et al., Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations, Cancer discovery, vol.4, pp.1342-1353, 2014.

M. Serrano, H. Lee, L. Chin, C. Cordon-cardo, D. Beach et al., Role of the INK4a locus in tumor suppression and cell mortality, Cell, vol.85, pp.27-37, 1996.

K. Nakashima, X. Zhou, G. Kunkel, Z. Zhang, J. M. Deng et al., The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation, Cell, vol.108, pp.17-29, 2002.

S. J. Rodda and A. P. Mcmahon, Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors, Development, vol.133, pp.3231-3244, 2006.

C. R. Walkley, R. Qudsi, V. G. Sankaran, J. A. Perry, M. Gostissa et al., Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease, Genes Dev, vol.22, pp.1662-1676, 2008.

J. Chen, Y. Shi, J. Regan, K. Karuppaiah, D. M. Ornitz et al., Osx-Cre targets multiple cell types besides osteoblast lineage in postnatal mice, Plos One, vol.9, p.85161, 2014.

A. Zomer, C. Maynard, F. J. Verweij, A. Kamermans, R. Schafer et al.,

J. Rheenen, In Vivo Imaging Reveals Extracellular Vesicle-Mediated Phenocopying of Metastatic Behavior. Cell, vol.161, pp.1046-1057, 2015.

F. Liu, H. W. Woitge, A. Braut, M. S. Kronenberg, A. C. Lichtler et al., Expression and activity of osteoblast-targeted Cre recombinase transgenes in murine skeletal tissues, Int J Dev Biol, vol.48, pp.645-653, 2004.

M. Horowitz, T. Delaney, M. Malawer, and M. Tsokos, Ewing's sarcoma family of tumors: Ewing's sarcoma of bone and soft tissue and the peripheral primitive neuroectodermal tumors, Lippincott), 1993.

L. Beaudet, G. Charron, D. Houle, I. Tretjakoff, A. Peterson et al., Intragenic regulatory elements contribute to transcriptional control of the neurofilament light gene, Gene, vol.116, pp.205-214, 1992.

H. Albert, E. C. Dale, L. E. Ow, and D. W. , Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome, Plant J, vol.7, pp.649-659, 1995.

D. Strathdee, H. Ibbotson, and S. G. Grant, Expression of transgenes targeted to the Gt(ROSA)26Sor locus is orientation dependent, PLoS One, vol.1, p.4, 2006.

P. Soriano, Generalized lacZ expression with the ROSA26 Cre reporter strain, Nat Genet, vol.21, pp.70-71, 1999.

P. C. Scacheri, J. S. Crabtree, E. A. Novotny, L. Garrett-beal, A. Chen et al., Bidirectional transcriptional activity of PGK-neomycin and unexpected embryonic lethality in heterozygote chimeric knockout mice, Genesis, vol.30, pp.259-263, 2001.

M. Logan, J. F. Martin, A. Nagy, C. Lobe, E. N. Olson et al., Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer, Genesis, vol.33, pp.77-80, 2002.

F. Schwenk, U. Baron, and K. Rajewsky, A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells, Nucleic Acids Res, vol.23, pp.5080-5081, 1995.

K. Yu, J. Xu, Z. Liu, D. Sosic, J. Shao et al., Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth, Development, vol.130, pp.3063-3074, 2003.

L. Florin, H. Alter, H. J. Grone, A. Szabowski, G. Schutz et al., Cre recombinase-mediated gene targeting of mesenchymal cells, Genesis, vol.38, pp.139-144, 2004.

H. Akiyama, J. E. Kim, K. Nakashima, G. Balmes, N. Iwai et al., Osteo-chondroprogenitor cells are derived from Sox9 expressing precursors, P Natl Acad Sci USA, vol.102, pp.14665-14670, 2005.

Y. Yamauchi, K. Abe, A. Mantani, Y. Hitoshi, M. Suzuki et al., A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice, Dev Biol, vol.212, pp.191-203, 1999.

M. Shiota, T. Heike, M. Haruyama, S. Baba, A. Tsuchiya et al., Isolation and characterization of bone marrow-derived mesenchymal progenitor cells with myogenic and neuronal properties, Exp Cell Res, vol.313, pp.1008-1023, 2007.

A. Peister, J. A. Mellad, B. L. Larson, B. M. Hall, L. F. Gibson et al., Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential, Blood, vol.103, pp.1662-1668, 2004.

J. Cadinanos and A. Bradley, Generation of an inducible and optimized piggyBac transposon system, Nucleic Acids Res, vol.35, p.87, 2007.

H. Tsumura, T. Yoshida, H. Saito, K. Imanaka-yoshida, and N. Suzuki, Cooperation of oncogenic K-ras and p53 deficiency in pleomorphic rhabdomyosarcoma development in adult mice, Oncogene, vol.25, pp.7673-7679, 2006.

R. Meuwissen, S. C. Linn, M. Van-der-valk, M. Wj, and A. Berns, Mouse model for lung tumorigenesis through Cre/ lox controlled sporadic activation of the K-Ras oncogene, Oncogene, vol.20, pp.6551-6558, 2001.

S. Ueda, K. Fukamachi, Y. Matsuoka, N. Takasuka, F. Takeshita et al., Ductal origin of pancreatic adenocarcinomas induced by conditional activation of a human Ha-ras oncogene in rat pancreas, Carcinogenesis, vol.27, pp.2497-2510, 2006.

K. E. Hung, M. A. Maricevich, L. G. Richard, W. Y. Chen, M. P. Richardson et al., Development of a mouse model www.impactjournals.com/oncotarget for sporadic and metastatic colon tumors and its use in assessing drug treatment, P Natl Acad Sci USA, vol.107, pp.1565-1570, 2010.

J. P. Zwerner, J. Guimbellot, and M. Wa, EWS/FLI function varies in different cellular backgrounds, Experimental cell research, vol.290, pp.414-419, 2003.

D. Navarro, N. Agra, A. Pestana, A. J. Gonzalez-sancho, and J. M. , The EWS/FLI1 oncogenic protein inhibits expression of the Wnt inhibitor DICKKOPF-1 gene and antagonizes beta-catenin/TCF-mediated transcription, Carcinogenesis, vol.31, pp.394-401, 2010.

T. Fevr, S. Robine, D. Louvard, and J. Huelsken, Wnt/ beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells, Mol Cell Biol, vol.27, pp.7551-7559, 2007.

A. Crozat, P. Aman, N. Mandahl, and R. D. , Fusion of Chop to a Novel Rna-Binding Protein in Human Myxoid Liposarcoma, Nature, vol.363, pp.640-644, 1993.

H. Sonobe, T. Takeuchi, T. Taguchi, K. Shimizu, J. Iwata et al., Further characterization of the human clear cell sarcoma cell line HS-MM demonstrating a specific t(12;22)(q13;q12) translocation and hybrid EWS/ ATF-1 transcript, J Pathol, vol.187, pp.594-597, 1999.

J. S. Burns, B. M. Abdallah, H. D. Schroder, and M. Kassem, The histopathology of a human mesenchymal stem cell experimental tumor model: support for an hMSC origin for Ewing's sarcoma?, Histology and histopathology, vol.23, pp.1229-1240, 2008.

P. P. Lin, W. Y. Lozano, and G. , Mesenchymal Stem Cells and the Origin of Ewing's Sarcoma, Sarcoma, 2011.

G. Potikyan, K. A. France, M. R. Carlson, J. Dong, N. Sf et al., Genetically defined EWS/FLI1 model system suggests mesenchymal origin of Ewing's family tumors, Laboratory investigation, vol.88, pp.1291-1302, 2008.

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, P. Charbord et al., Mesenchymal stem cell features of Ewing tumors, Cancer cell, vol.11, pp.421-429, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-02438637

X. Li, M. E. Mcgee-lawrence, M. Decker, and J. J. Westendorf, The Ewing's sarcoma fusion protein, EWS-FLI, binds Runx2 and blocks osteoblast differentiation, J Cell Biochem, vol.111, pp.933-943, 2010.

N. Riggi, B. Knoechel, S. M. Gillespie, E. Rheinbay, G. Boulay et al., EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma, Cancer cell, vol.26, pp.668-681, 2014.

E. M. Tomazou, N. C. Sheffield, C. Schmidl, M. Schuster, A. Schonegger et al., Epigenome mapping reveals distinct modes of gene regulation and widespread enhancer reprogramming by the oncogenic fusion protein EWS-FLI1, Cell Rep, vol.10, pp.1082-1095, 2015.

H. Kovar, Blocking the road, stopping the engine or killing the driver? Advances in targeting EWS/FLI-1 fusion in Ewing sarcoma as novel therapy, Expert Opin Ther Targets, vol.18, pp.1315-1328, 2014.

C. J. Weiss and W. A. , Alternative splicing in cancer: implications for biology and therapy, Oncogene, vol.34, pp.1-14, 2015.

S. P. Selvanathan, G. T. Graham, H. V. Erkizan, U. Dirksen, T. G. Natarajan et al., Oncogenic fusion protein EWS-FLI1 is a network hub that regulates alternative splicing, P Natl Acad Sci USA, vol.112, pp.1307-1316, 2015.

L. L. Knoop and S. J. Baker, EWS/FLI alters 5 '-splice site selection, Journal of Biological Chemistry, vol.276, pp.22317-22322, 2001.

L. Yang, H. A. Chansky, and D. D. Hickstein, EWS center dot Fli-1 fusion protein interacts with hyperphosphorylated RNA polymerase II and interferes with serine-arginine protein-mediated RNA splicing, Journal of Biological Chemistry, vol.275, pp.37612-37618, 2000.

H. A. Chansky, M. Hu, D. D. Hickstein, and Y. L. , Oncogenic TLS/ERG and EWS/Fli-1 fusion proteins inhibit RNA splicing mediated by YB-1 protein, Cancer Res, vol.61, pp.3586-3590, 2001.

H. Kovar, G. Jug, C. Hattinger, L. Spahn, D. N. Aryee et al., The EWS protein is dispensable for Ewing tumor growth, Cancer Res, vol.61, pp.5992-5997, 2001.

K. Gangwal, S. Sankar, P. C. Hollenhorst, M. Kinsey, S. C. Haroldsen et al., Microsatellites as EWIS/ FLI response elements in Ewing's sarcoma, P Natl Acad Sci USA, vol.105, pp.10149-10154, 2008.

W. Luo, K. Gangwal, S. Sankar, K. M. Boucher, T. D. Lessnick et al., GSTM4 is a microsatellite-containing EWS/ FLI target involved in Ewing's sarcoma oncogenesis and therapeutic resistance, Oncogene, vol.28, pp.4126-4132, 2009.

K. Gangwal, D. Close, C. A. Enriquez, C. P. Hill, and S. L. Lessnick, Emergent Properties of EWS/FLI Regulation via GGAA Microsatellites in Ewing's Sarcoma, Genes Cancer, vol.1, pp.177-187, 2010.

M. J. Monument, K. M. Johnson, A. H. Grossmann, J. D. Schiffman, R. Rl et al., Microsatellites with Macro-Influence in Ewing Sarcoma, Genes-Basel, vol.3, pp.444-460, 2012.

R. Beck, M. J. Monument, W. S. Watkins, R. Smith, K. M. Boucher et al., EWS/FLI-responsive GGAA microsatellites exhibit polymorphic differences between European and African populations, Cancer Genet-Ny, vol.205, pp.304-312, 2012.

M. J. Monument, K. M. Johnson, E. Mcilvaine, L. Abegglen, W. S. Watkins et al., Clinical and Biochemical Function of Polymorphic NR0B1 www.impactjournals.com/oncotarget GGAA-Microsatellites in Ewing Sarcoma: A Report from the Children's Oncology Group, Plos One, vol.9, p.104378, 2014.

T. G. Grunewald, V. Bernard, P. Gilardi-hebenstreit, V. Raynal, D. Surdez et al., Chimeric EWSR1-FLI1 regulates the Ewing sarcoma susceptibility gene EGR2 via a GGAA microsatellite, Nat Genet, vol.47, pp.1073-1078, 2015.

I. M. Ambros, P. F. Ambros, S. Strehl, H. Kovar, H. Gadner et al., MIC2 is a specific marker for Ewing's sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing's sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration, Cancer, vol.67, pp.1886-1893, 1991.

H. Kovar, M. Dworzak, S. Strehl, E. Schnell, A. I. et al., Overexpression of the pseudoautosomal gene MIC2 in Ewing's sarcoma and peripheral primitive neuroectodermal tumor, Oncogene, vol.5, pp.1067-1070, 1990.

E. J. Fellinger, P. Garin-chesa, T. J. Triche, A. G. Huvos, and W. J. Rettig, Immunohistochemical analysis of Ewing's sarcoma cell surface antigen p30/32MIC2. The American journal of pathology, vol.139, pp.317-325, 1991.

E. J. Perlman, P. S. Dickman, F. B. Askin, H. E. Grier, J. S. Miser et al., Ewing's sarcoma-routine diagnostic utilization of MIC2 analysis: a Pediatric Oncology Group/Children's Cancer Group Intergroup Study, Human pathology, vol.25, pp.304-307, 1994.

M. Kreppel, D. N. Aryee, K. L. Schaefer, G. Amann, R. Kofler et al., Suppression of KCMF1 by constitutive high CD99 expression is involved in the migratory ability of Ewing's sarcoma cells, Oncogene, vol.25, pp.2795-2800, 2006.

K. Scotlandi, N. Baldini, V. Cerisano, M. C. Manara, S. Benini et al., CD99 engagement: an effective therapeutic strategy for Ewing tumors, Cancer research, vol.60, pp.5134-5142, 2000.

H. W. Sohn, E. Y. Choi, S. H. Kim, I. S. Lee, D. H. Chung et al., Engagement of CD99 induces apoptosis through a calcineurin-independent pathway in Ewing's sarcoma cells. The American journal of pathology, vol.153, pp.1937-1945, 1998.

A. Rocchi, M. C. Manara, M. Sciandra, D. Zambelli, F. Nardi et al., CD99 inhibits neural differentiation of human Ewing sarcoma cells and thereby contributes to oncogenesis, The Journal of clinical investigation, vol.120, pp.668-680, 2010.

K. Scotlandi, S. Perdichizzi, G. Bernard, G. Nicoletti, P. Nanni et al., Targeting CD99 in association with doxorubicin: an effective combined treatment for Ewing's sarcoma, European journal of cancer, vol.42, pp.91-96, 2006.

G. Bixel, S. Kloep, S. Butz, B. Petri, B. Engelhardt et al., Mouse CD99 participates in T-cell recruitment into inflamed skin, Blood, vol.104, pp.3205-3213, 2004.

Y. H. Suh, Y. K. Shin, M. C. Kook, K. I. Oh, W. S. Park et al., Cloning, genomic organization, alternative transcripts and expression analysis of CD99L2, a novel paralog of human CD99, and identification of evolutionary conserved motifs, Gene, vol.307, pp.63-76, 2003.

D. J. Elzi, M. Song, P. J. Houghton, C. Y. Shiio, and Y. , The role of FLI-1-EWS, a fusion gene reciprocal to EWS-FLI-1, in Ewing sarcoma, Genes & cancer, vol.6, pp.452-461, 2015.

M. Stock and F. Otto, Control of RUNX2 isoform expression: the role of promoters and enhancers, J Cell Biochem, vol.95, pp.506-517, 2005.

T. Melot, N. Gruel, A. Doubeikovski, N. Sevenet, J. L. Teillaud et al., Production and characterization of mouse monoclonal antibodies to wild-type and oncogenic FLI-1 proteins, Hybridoma, vol.16, pp.457-464, 1997.

A. J. Aguirre, N. Bardeesy, M. Sinha, L. Lopez, D. A. Tuveson et al., Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma, Genes & development, vol.17, pp.3112-3126, 2003.

C. K. Chan, C. C. Chen, C. A. Luppen, J. B. Kim, A. T. Deboer et al., Endochondral ossification is required for haematopoietic stem-cell niche formation, Nature, vol.457, pp.490-494, 2009.

P. Viatour, T. C. Somervaille, S. Venkatasubrahmanyam, S. Kogan, M. E. Mclaughlin et al., Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family, Cell Stem Cell, vol.3, pp.416-428, 2008.

S. Forss-petter, P. E. Danielson, S. Catsicas, E. Battenberg, J. Price et al., Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control, Neuron, vol.5, pp.187-197, 1990.