C. Griscelli, A syndrome associating partial albinism and immunodeficiency, Am. J. Med, vol.65, pp.691-702, 1978.

E. Pastural, Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene, Nat. Genet, vol.16, pp.289-292, 1997.

G. Ménasché, Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome, Nat. Genet, vol.25, pp.173-176, 2000.

P. Bahadoran, Rab27a. A key to melanosome transport in human melanocytes, J. Cell Biol, vol.152, pp.843-850, 2001.
URL : https://hal.archives-ouvertes.fr/hal-02358833

G. M. Langford and B. J. Molyneaux, Myosin V in the brain: mutations lead to neurological defects, Brain Res. Brain Res. Rev, vol.28, pp.1-8, 1998.

S. Blanche, Treatment of hemophagocytic lymphohistiocytosis with chemotherapy and bone marrow transplantation: a singlecenter study of 22 cases, Blood, vol.78, pp.51-54, 1991.

S. Stepp, Perforin gene defects in familial hemophagocytic lymphohistiocytosis, Science, vol.286, pp.1957-1959, 1999.

G. De-saint-basile and A. Fischer, The role of cytotoxicity in lymphocyte homeostasis, Curr. Opin. Immunol, vol.13, pp.549-554, 2001.

E. Pastural, Two genes are responsible for Griscelli syndrome at the same 15q21 locus, Genomics, vol.63, pp.299-306, 2000.

N. A. Jenkins, N. G. Copeland, B. A. Taylor, and B. K. Lee, Dilute (d) coat colour mutation of DBA/2J mice is associated with the site of integration of an ecotropic MuLV genome, Nature, vol.293, pp.370-374, 1981.

S. M. Wilson, A mutation in Rab27a causes the vesicle transport defects observed in ashen mice, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.7933-7938, 2000.

J. C. Stinchcombe, Rab27a is required for regulated secretion in cytotoxic t lymphocytes, J. Cell Biol, vol.152, pp.825-834, 2001.

E. K. Haddad, X. Wu, J. A. Hammer, and P. A. Henkart, Defective granule exocytosis in rab27a-deficient lymphocytes from ashen mice, J. Cell Biol, vol.152, pp.835-842, 2001.

L. E. Matesic, Mutations in Mlph, encoding a member of the Rab effector family, cause the melanosome transport defects observed in leaden mice, Proc. Natl. Acad. Sci. U. S. A, vol.98, pp.10238-10243, 2001.

X. S. Wu, Identification of an organelle receptor for myosin-Va, Nat. Cell Biol, vol.4, pp.271-278, 2002.

M. Strom, A. N. Hume, A. K. Tarafder, E. Barkagianni, and M. C. Seabra, A family of Rab27-binding proteins. Melanophilin links Rab27a and myosin Va function in melanosome transport, J. Biol. Chem, vol.277, pp.25423-25430, 2002.

A. N. Hume, The leaden gene product is required with Rab27a to recruit myosin Va to melanosomes in melanocytes, Traffic, vol.3, pp.193-202, 2002.

O. Sanal, Griscelli disease: genotype-phenotype correlation in an array of clinical heterogeneity, J. Clin. Immunol, vol.22, pp.237-243, 2002.

F. Barrat, Genetic and physical mapping of the Chédiak-Higashi syndrome on chromosome 1q42-43, Am. J. Hum. Genet, vol.59, pp.625-632, 1996.

C. Dib, A comprehensive genetic map of the human genome based on 5,264 microsatellites, Nature, vol.380, pp.111-135, 1996.

G. Menasché, Biochemical and functional characterization of Rab27a mutations occurring in Griscelli syndrome patients, Blood, vol.101, pp.2736-2742, 2003.

T. S. Kuroda, M. Fukuda, H. Ariga, and K. Mikoshiba, The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain, J. Biol. Chem, vol.277, pp.9212-9218, 2002.

B. Seraphin, An efficient PCR mutagenesis strategy without gel purificiation step that is amenable to automation, Nucleic Acids Res, vol.24, pp.3276-3277, 1996.

J. C. Venter, The sequence of the human genome, Science, vol.291, pp.1304-1351, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00465088

M. Fukuda, The synaptotagmin-like protein (Slp) homology domain 1 of Slac2-a/melanophilin is a critical determinant of GTPdependent, specific binding of Rab27A, J. Biol. Chem, vol.277, pp.40118-40124, 2002.

C. Ostermeier and A. T. Brunger, Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A, Cell, vol.96, pp.363-374, 1999.

X. Wu, Rab27a enables myosin Va-dependent melanosome capture by recruiting the myosin to the organelle, J. Cell Sci, vol.114, pp.1091-1100, 2001.

J. D. Huang, Molecular genetic dissection of mouse unconventional myosin-VA: head region mutations, Genetics, vol.148, pp.1951-1961, 1998.

J. D. Huang, Molecular genetic dissection of mouse unconventional myosin-VA: tail region mutations, Genetics, vol.148, pp.1963-1972, 1998.

J. Lambert, J. M. Naeyaert, T. Callens, A. De-paepe, and L. Messiaen, Human myosin V gene produces different transcripts in a cell type-specific manner, Biochem. Biophys. Res. Commun, vol.252, pp.329-333, 1998.

D. Kagi, Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice, Nature, vol.369, pp.31-37, 1994.

M. Matloubian, A role for perforin in downregulating T-cell responses during chronic viral infection, J. Virol, vol.73, pp.2527-2536, 1999.

D. Kagi, B. Odermatt, and T. W. Mak, Homeostatic regulation of CD8+ T cells by perforin, Eur. J. Immunol, vol.29, pp.3262-3272, 1999.