J. H. Russell and T. J. Ley, Lymphocyte-mediated cytotoxicity, Annu. Rev. Immunol, vol.20, pp.323-370, 2002.

G. M. Griffiths and S. Isaaz, Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor, J. Cell Biol, vol.120, pp.885-896, 1993.

A. Kupfer and S. J. Singer, Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples, Annu. Rev. Immunol, vol.7, pp.309-337, 1989.

S. Shresta, C. T. Pham, D. A. Thomas, T. A. Graubert, and T. J. Ley, How do cytotoxic lymphocytes kill their targets?, Curr. Opin. Immunol, vol.10, pp.581-587, 1998.

J. C. Stinchcombe, G. Bossi, S. Booth, and G. M. Griffiths, The immunological synapse of CTL contains a secretory domain and membrane bridges, Immunity, vol.15, pp.751-761, 2001.

M. Faroudi, Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold, Proc. Natl. Acad. Sci. USA, vol.100, pp.14145-14150, 2003.

M. A. Purbhoo, D. J. Irvine, J. B. Huppa, and M. M. Davis, T cell killing does not require the formation of a stable mature immunological synapse, Nat. Immunol, vol.5, pp.524-530, 2004.

G. Menasche, J. Feldmann, A. Fischer, . De-saint, and G. Basile, Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis, Immunol. Rev, vol.203, pp.165-179, 2005.

P. J. Peters, Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes, J. Exp. Med, vol.173, pp.1099-1109, 1991.

J. K. Burkhardt, S. Hester, C. K. Lapham, and Y. Argon, The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments, J. Cell Biol, vol.111, pp.2327-2340, 1990.

A. M. Cuervo and J. F. Dice, A receptor for the selective uptake and degradation of proteins by lysosomes, Science, vol.273, pp.501-503, 1996.

E. J. Blott and G. M. Griffiths, Secretory lysosomes, Nat. Rev. Mol. Cell Biol, vol.3, pp.122-131, 2002.

J. C. Stinchcombe, L. J. Page, and G. M. Griffiths, Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients, Traffic, vol.1, pp.435-444, 2000.

J. K. Burkhardt, J. M. Mcilvain, . Jr, M. P. Sheetz, and Y. Argon, Lytic granules from cytotoxic T cells exhibit kinesin-dependent motility on microtubules in vitro, J. Cell Sci, vol.104, pp.151-162, 1993.

J. R. Kuhn, Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing, Immunity, vol.16, pp.111-121, 2002.

J. C. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. M. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.443, pp.462-465, 2006.

G. Ménasché, Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome, Nat. Genet, vol.25, pp.173-176, 2000.

E. K. Haddad, X. Wu, J. A. Hammer, and P. A. Henkart, Defective granule exocytosis in rab27a-deficient lymphocytes from ashen mice, J. Cell Biol, vol.152, pp.835-842, 2001.

J. Feldmann, Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3), Cell, vol.115, pp.461-473, 2003.

M. C. Seabra and C. Wasmeier, Controlling the location and activation of Rab GTPases, Curr. Opin. Cell Biol, vol.16, pp.451-457, 2004.

N. Brose, C. Rosenmund, and J. Rettig, Regulation of transmitter release by Unc-13 and its homologues, Curr. Opin. Neurobiol, vol.10, pp.303-311, 2000.

R. Shirakawa, Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets, J. Biol. Chem, vol.279, pp.10730-10737, 2004.

M. Neeft, Munc13-4 is an effector of rab27a and controls secretion of lysosomes in hematopoietic cells, Mol. Biol. Cell, vol.16, pp.731-741, 2005.

Y. Feng, B. Press, and A. Wandinger-ness, Rab 7: an important regulator of late endocytic membrane traffic, J. Cell Biol, vol.131, pp.1435-1452, 1995.

E. Perret, A. Lakkaraju, S. Deborde, R. Schreiner, and E. Rodriguez-boulan, Evolving endosomes: how many varieties and why?, Curr. Opin. Cell Biol, vol.17, pp.423-434, 2005.

N. Yoneda, Detection of Epstein-Barr virus genome in natural-killer-like cell line, YT. Leukemia, vol.6, pp.136-141, 1992.

I. Olsen, G. Bou-gharios, and D. Abraham, The activation of resting lymphocytes is accompanied by the biogenesis of lysosomal organelles, Eur. J. Immunol, vol.20, pp.2161-2170, 1990.

W. Guo, M. Sacher, J. Barrowman, S. Ferro-novick, and P. Novick, Protein complexes in transport vesicle targeting, Trends Cell Biol, vol.10, pp.251-255, 2000.

S. Pfeffer, Vesicle tethering factors united, Mol. Cell, vol.8, pp.729-730, 2001.

T. S. Kuroda, M. Fukuda, H. Ariga, and K. Mikoshiba, The Slp homology domain of synaptotagmin-like proteins 1-4 and Slac2 functions as a novel Rab27A binding domain, J. Biol. Chem, vol.277, pp.9212-9218, 2002.

T. S. Kuroda, T. Itoh, and M. Fukuda, Functional analysis of slac2-a/melanophilin as a linker protein between Rab27A and myosin Va in melanosome transport, Methods Enzymol, vol.403, pp.419-431, 2005.

A. Betz, Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming, Neuron, vol.30, pp.183-196, 2001.

I. Augustin, C. Rosenmund, T. C. Sudhof, and N. Brose, Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles, Nature, vol.400, pp.457-461, 1999.

I. Dulubova, A conformational switch in syntaxin during exocytosis: role of munc18, EMBO J, vol.18, pp.4372-4382, 1999.

J. E. Richmond, R. M. Weimer, and E. M. Jorgensen, An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming, Nature, vol.412, pp.338-341, 2001.

J. M. Madison, S. Nurrish, and J. M. Kaplan, UNC-13 interaction with syntaxin is required for synaptic transmission, Curr. Biol, vol.15, pp.2236-2242, 2005.

J. Basu, A minimal domain responsible for Munc13 activity, Nat. Struct. Mol. Biol, vol.12, pp.1017-1018, 2005.

M. Wilcke, Rab11 regulates the compartmentalization of early endosomes required for efficient transport from early endosomes to the trans-golgi network, J. Cell Biol, vol.151, pp.1207-1220, 2000.

S. C. Van-ijzendoorn, Recycling endosomes, J. Cell Sci, vol.119, pp.1679-1681, 2006.

A. Savina, C. M. Fader, M. T. Damiani, and M. I. Colombo, Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner, Traffic, vol.6, pp.131-143, 2005.

M. V. Khvotchev, M. Ren, S. Takamori, R. Jahn, and T. C. Sudhof, Divergent functions of neuronal Rab11b in Ca 2+ -regulated versus constitutive exocytosis, J. Neurosci, vol.23, pp.10531-10539, 2003.

T. C. Sudhof, The synaptic vesicle cycle: a cascade of protein-protein interactions, Nature, vol.375, pp.645-653, 1995.

E. T. Kavalali, Synaptic vesicle reuse and its implications, Neuroscientist, vol.12, pp.57-66, 2006.

M. Poenie, R. Y. Tsien, and A. M. Schmitt-verhulst, Sequential activation and lethal hit measured by [Ca 2+ ] i in individual cytolytic T cells and targets, EMBO J, vol.6, pp.2223-2232, 1987.

G. Menasche, Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1), J. Clin. Invest, vol.112, pp.450-456, 2003.

E. M. Manders, R. Hoebe, J. Strackee, A. M. Vossepoel, and J. A. Aten, Largest contour segmentation: a tool for the localization of spots in confocal images, Cytometry, vol.23, pp.15-21, 1996.

G. Raposo, Immunogold labeling of ultrathin cryosections: application in immunology, Handbook of Exp. Immunol, vol.4, pp.1-11, 1997.