J. H. Russell and T. J. Ley, Lymphocyte-mediated cytotoxicity, Annu Rev Immunol, vol.20, pp.323-370, 2002.

C. Bottino, L. Moretta, and A. Moretta, NK cell activating receptors and tumor recognition in humans, Curr Top Microbiol Immunol, vol.298, pp.175-182, 2006.

J. C. Stinchcombe, G. Bossi, S. Booth, and G. M. Griffiths, The immunological synapse of CTL contains a secretory domain and membrane bridges, Immunity, vol.15, pp.751-761, 2001.

M. A. Purbhoo, D. J. Irvine, J. B. Huppa, and M. M. Davis, T cell killing does not require the formation of a stable mature immunological synapse, Nat Immunol, vol.5, pp.524-530, 2004.

J. C. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. M. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.443, pp.462-465, 2006.

M. R. Jenkins, A. Tsun, J. C. Stinchcombe, and G. M. Griffiths, The strength of T cell receptor signal controls the polarization of cytotoxic machinery to the immunological synapse, Immunity, vol.31, pp.621-631, 2009.

A. M. Beal, Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain, Immunity, vol.31, pp.632-642, 2009.

J. A. Trapani and M. J. Smyth, Functional significance of the perforin ? granzyme cell death pathway, Nat Rev Immunol, vol.2, pp.735-747, 2002.

J. Lieberman, The ABCs of granule-mediated cytotoxicity: new weapons in the arsenal, Nat Rev Immunol, vol.3, pp.361-370, 2003.

M. Barry and R. C. Bleackley, Cytotoxic T lymphocytes: all roads lead to death, Nat Rev Immunol, vol.2, pp.401-409, 2002.

I. Voskoboinik, M. J. Smyth, and J. A. Trapani, Perforin-mediated target-cell death and immune homeostasis, Nat Rev Immunol, vol.6, pp.940-952, 2006.

S. P. Cullen and S. J. Martin, Mechanisms of granule-dependent killing, Cell Death Differ, vol.15, pp.251-262, 2008.

D. Martinvalet, D. M. Dykxhoorn, R. Ferrini, and J. Lieberman, Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death, Cell, vol.133, pp.681-692, 2008.

G. De-saintbasile and A. Fischer, The role of cytotoxicity in lymphocyte homeostasis, Curr Opin Immunol, vol.13, pp.549-554, 2001.

G. Menasche, J. Feldmann, A. Fischer, and G. De-saint-basile, Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis, Immunol Rev, vol.203, pp.165-179, 2005.

J. I. Henter, G. Elinder, and A. Ost, Diagnostic guidelines for hemophagocytic lymphohistiocytosis. The FHL Study Group of the Histiocyte Society, Semin Oncol, vol.18, pp.29-33, 1991.

J. I. Henter, G. Elinder, O. Soder, M. Hansson, B. Andersson et al., Hypercytokinemia in familial hemophagocytic lymphohistiocytosis, Blood, vol.78, pp.2918-2922, 1991.

A. D. Billiau, T. Roskams, R. Van-damme-lombaerts, P. Matthys, and C. Wouters, Macrophage activation syndrome: characteristic findings on liver biopsy illustrating the key role of activated, IFN-gamma-producing lymphocytes and IL-6-and TNFalpha-producing macrophages, Blood, vol.105, pp.1648-1651, 2005.

J. I. Henter, M. Arico, G. Elinder, S. Imashuku, and J. G. , Familial hemophagocytic lymphohistiocytosis: primary hemophagocytic lymphohistiocytosis, Hematol Oncol Clin North Am, vol.12, pp.417-433, 1998.

J. Farquhar and A. Claireaux, Familial haemophagocytic reticulosis, Arch Dis Child, vol.27, pp.519-525, 1952.

E. Haddad, M. L. Sulis, N. Jabado, S. Blanche, A. Fischer et al., Frequency and severity of central nervous system lesions in hemophagocytic lymphohistiocytosis, Blood, vol.89, pp.794-800, 1997.

Y. Osugi, Cytokine production regulating Th1 and Th2 cytokines in hemophagocytic lymphohistiocytosis, Blood, vol.89, pp.4100-4103, 1997.

J. I. Henter, G. Elinder, O. Soder, and A. Ost, Incidence in Sweden and clinical features of familial hemophagocytic lymphohistiocytosis. Diagnostic guidelines for hemophagocytic lymphohistiocytosis. The FHL Study Group of the Histiocyte Society, Acta Paediatr Scand, vol.80, pp.428-435, 1991.

J. M. Lipton, S. Westra, C. E. Haverty, D. Roberts, and N. L. Harris, Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 28-2004. Newborn twins with thrombocytopenia, coagulation defects, and hepatosplenomegaly, N Engl J Med, vol.351, pp.1120-1130, 2004.

E. M. Schneider, I. Lorenz, M. Muller-rosenberger, G. Steinbach, M. Kron et al., Hemophagocytic lymphohistiocytosis is associated with deficiencies of cellular cytolysis but normal expression of transcripts relevant to killer-cell-induced apoptosis, Blood, vol.100, pp.2891-2898, 2002.

M. Ohadi, Localization of a gene for familial hemophagocytic lymphohistiocytosis at chromosome 9q21.3-22 by homozygosity mapping, Am J Hum Genet, vol.64, pp.165-171, 1999.

R. Dufourcq-lagelouse, Linkage of familial hemophagocytic lymphohistiocytosis to 10q21-22 and evidence for heterogeneity, Am J Hum Genet, vol.64, pp.172-179, 1999.

J. Feldmann, Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3), Cell, vol.115, pp.461-473, 2003.

U. Stadt, Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11, Hum Mol Genet, vol.14, pp.827-834, 2005.

M. Côte, Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells, J Clin Invest, vol.119, pp.3765-3773, 2009.

U. Stadt, Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11, Am J Hum Genet, vol.85, pp.482-492, 2009.

S. Stepp, Perforin gene defects in familial hemophagocytic lymphohistiocytosis, Science, vol.286, pp.1957-1959, 1999.

M. G. Lichtenheld, Structure and function of human perforin, Nature, vol.335, pp.448-451, 1988.

R. Uellner, Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain, EMBO J, vol.16, pp.7287-7296, 1997.

I. Voskoboinik, J. Mar, and J. Camakaris, Mutational analysis of the Menkes copper P-type ATPase (ATP7A), Biochem Biophys Res Commun, vol.301, pp.488-494, 2003.

C. J. Rosado, A common fold mediates vertebrate defense and bacterial attack, Science, vol.317, pp.1548-1551, 2007.

J. Feldmann, Functional consequences of perforin gene mutations in 22 patients with familial haemophagocytic lymphohistiocytosis, Br J Haematol, vol.117, pp.965-972, 2002.

I. Voskoboinik, The functional basis for hemophagocytic lymphohistiocytosis in a patient with co-inherited missense mutations in the perforin (PFN1) gene, J Exp Med, vol.200, pp.811-816, 2004.

J. Feldmann, Severe and progressive encephalitis as a presenting manifestation of a novel missense perforin mutation and impaired cytolytic activity, Blood, vol.105, pp.2658-2663, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00021627

Z. Stadt, U. Beutel, K. Weber, B. Kabisch, H. Schneppenheim et al., A91V is a polymorphism in the perforin gene not causative of an FHLH phenotype, Blood, vol.104, 1909.

C. Trambas, A single amino acid change, A91V, leads to conformational changes that can impair processing to the active form of perforin, Blood, vol.106, pp.932-937, 2005.

A. Santoro, S. Cannella, A. Trizzino, L. Lo-nigro, G. Corsello et al., A single amino acid change A91V in perforin: a novel, frequent predisposing factor to childhood acute lymphoblastic leukemia?, Haematologica, vol.90, pp.697-698, 2005.

I. Voskoboinik, Perforin activity and immune homeostasis: the common A91V polymorphism in perforin results in both presynaptic and postsynaptic defects in function, Blood, vol.110, pp.1184-1190, 2007.

J. Chia, K. P. Yeo, J. C. Whisstock, M. A. Dunstone, J. A. Trapani et al., Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer, Proc Natl Acad Sci, vol.106, pp.9809-9814, 2009.

S. Marcenaro, Analysis of natural killercell function in familial hemophagocytic lymphohistiocytosis (FHL): defective CD107a surface expression heralds Munc13-4 defect and discriminates between genetic subtypes of the disease, Blood, vol.108, pp.2316-2323, 2006.

A. Santoro, Novel Munc13-4 mutations in children and young adult patients with haemophagocytic lymphohistiocytosis, J Med Genet, vol.43, pp.953-960, 2006.

Z. Stadt and U. , Mutation spectrum in children with primary hemophagocytic lymphohistiocytosis: molecular and functional analyses of PRF1, UNC13D, STX11, and RAB27A, Hum Mutat, vol.27, pp.62-68, 2006.

I. Ueda, E. Ishii, A. Morimoto, S. Ohga, M. Sako et al., Correlation between phenotypic heterogeneity and gene mutational characteristics in familial hemophagocytic lymphohistiocytosis (FHL), Pediatr Blood Cancer, vol.46, pp.482-488, 2006.

W. Hong, Cytotoxic T lymphocyte exocytosis: bring on the SNAREs!, Trends Cell Biol, vol.15, pp.644-650, 2005.

N. Brose, K. Hofmann, Y. Hata, and T. C. Sudhof, Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins, J Biol Chem, vol.270, pp.25273-25280, 1995.

N. Brose, C. Rosenmund, and J. Rettig, Regulation of transmitter release by Unc-13 and its homologues, Curr Opin Neurobiol, vol.10, pp.303-311, 2000.

M. M. Menager, Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, Nat Immunol, vol.8, pp.257-267, 2007.

S. M. Wood, Different NK cell-activating receptors preferentially recruit Rab27a or Munc13-4 to perforin-containing granules for cytotoxicity, Blood, vol.114, pp.4117-4127, 2009.

R. Prekeris, J. Klumperman, and R. H. Scheller, Syntaxin 11 is an atypical SNARE abundant in the immune system, Eur J Cell Biol, vol.79, pp.771-780, 2000.

R. Jahn and R. H. Scheller, SNAREs -engines for membrane fusion, Nat Rev Mol Cell Biol, vol.7, pp.631-643, 2006.

Y. T. Bryceson, Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients, Blood, vol.110, pp.1906-1915, 2007.

S. Zhang, Syntaxin-11 is expressed in primary human monocytes ? macrophages and acts as a negative regulator of macrophage engulfment of apoptotic cells and IgG-opsonized target cells, Br J Haematol, vol.142, pp.469-479, 2008.

L. N. Arneson, A. Brickshawana, C. M. Segovis, R. A. Schoon, C. J. Dick et al., Cutting edge: syntaxin 11 regulates lymphocytemediated secretion and cytotoxicity, J Immunol, vol.179, pp.3397-3401, 2007.

R. F. Toonen and M. Verhage, Vesicle trafficking: pleasure and pain from SM genes, Trends Cell Biol, vol.13, pp.177-186, 2003.

T. C. Sudhof and J. E. Rothman, Membrane fusion: grappling with SNARE and SM proteins, Science, vol.323, pp.474-477, 2009.

M. Verhage, Synaptic assembly of the brain in the absence of neurotransmitter secretion, Science, vol.287, pp.864-869, 2000.

R. F. Toonen and M. Verhage, Munc18-1 in secretion: lonely Munc joins SNARE team and takes control, Trends Neurosci, vol.30, pp.564-572, 2007.

G. Ménasché, Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome, Nat Genet, vol.25, pp.173-176, 2000.

J. C. Stinchcombe, Rab27a is required for regulated secretion in cytotoxic t lymphocytes, J Cell Biol, vol.152, pp.825-834, 2001.

G. Menasche, A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion, Blood, vol.112, pp.5052-5062, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02440327

O. Holt, Slp1 and Slp2-a localize to the plasma membrane of CTL and contribute to secretion from the immunological synapse, Traffic, vol.9, pp.446-457, 2008.

X. S. Wu, Identification of an organelle receptor for myosin-Va, Nat Cell Biol, vol.4, pp.271-278, 2002.

J. Stinchcombe, G. Bossi, and G. M. Griffiths, Linking albinism and immunity: the secrets of secretory lysosomes, Science, vol.305, pp.55-59, 2004.

M. Tardieu, Progressive neurologic dysfunctions 20 years after allogeneic bone marrow transplantation for Chediak-Higashi syndrome, Blood, vol.106, pp.40-42, 2005.

D. L. Nagle, Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome, Nat Genet, vol.14, pp.307-311, 1996.

M. Barbosa, Identification of the homologous beige and Chediak-Higashi syndrome genes, Nature, vol.382, pp.262-265, 1996.

G. Jogl, Crystal structure of the BEACH domain reveals an unusual fold and extensive association with a novel PH domain, EMBO J, vol.21, pp.4785-4795, 2002.

D. Gebauer, J. Li, G. Jogl, Y. Shen, D. G. Myszka et al., Crystal structure of the PH-BEACH domains of human LRBA ? BGL, Biochemistry, vol.43, pp.14873-14880, 2004.

S. Martens and H. T. Mcmahon, Mechanisms of membrane fusion: disparate players and common principles, Nat Rev Mol Cell Biol, vol.9, pp.543-556, 2008.

V. T. Tchernev, The Chediak-Higashi protein interacts with SNARE complex and signal transduction proteins, Mol Med, vol.8, pp.56-64, 2002.

R. L. Williams and S. Urbe, The emerging shape of the ESCRT machinery, Nat Rev Mol Cell Biol, vol.8, pp.355-368, 2007.

A. Burgess, J. P. Mornon, G. De-saint-basile, and I. Callebaut, A concanavalin A-like lectin domain in the CHS1 ? LYST protein, shared by members of the BEACH family, Bioinformatics, vol.25, pp.1219-1222, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00383218

M. Gunay-aygun, M. Huizing, and W. A. Gahl, Molecular defects that affect platelet dense granules, Semin Thromb Hemost, vol.30, pp.537-547, 2004.

M. L. Wei, Hermansky-Pudlak syndrome: a disease of protein trafficking and organelle function, Pigment Cell Res, vol.19, pp.19-42, 2006.

R. Nazarian, M. Huizing, A. Helip-wooley, M. Starcevic, W. A. Gahl et al., An immunoblotting assay to facilitate the molecular diagnosis of Hermansky-Pudlak syndrome, Mol Genet Metab, vol.93, pp.134-144, 2008.

R. H. Clark, Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse, Nat Immunol, vol.4, pp.1111-1120, 2003.

A. Enders, Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II, Blood, vol.108, pp.81-87, 2006.

J. Jung, Identification of a homozygous deletion in the AP3B1 gene causing Hermansky-Pudlak syndrome, type 2, Blood, vol.108, pp.362-369, 2006.

E. C. Dell'angelica, V. Shotelersuk, R. C. Aguilar, W. A. Gahl, and J. S. Bonifacino, Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the beta 3A subunit of the AP-3 adaptor, Mol Cell, vol.3, pp.11-21, 1999.

E. C. Dell'angelica, H. Ohno, C. E. Ooi, E. Rabinovich, K. W. Roche et al., AP-3: an adaptor-like protein complex with ubiquitous expression, EMBO J, vol.16, pp.917-928, 1997.

E. C. Dell'angelica, C. E. Ooi, and J. S. Bonifacino, Beta3A-adaptin, a subunit of the adaptorlike complex AP-3, J Biol Chem, vol.272, pp.15078-15084, 1997.

K. F. Benson, Mutations associated with neutropenia in dogs and humans disrupt intracellular transport of neutrophil elastase, Nat Genet, vol.35, pp.90-96, 2003.

P. Massullo, Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytes, Blood, vol.105, pp.3397-3404, 2005.

S. Honing, I. V. Sandoval, V. Figura, and K. , A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3, EMBO J, vol.17, pp.1304-1314, 1998.

S. Latour and A. Veillette, The SAP family of adaptors in immune regulation, Semin Immunol, vol.16, pp.409-419, 2004.

S. Rigaud, XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome, Nature, vol.444, pp.110-114, 2006.

V. P. Badovinac, S. E. Hamilton, and J. T. Harty, Viral infection results in massive CD8 + T cell expansion and mortality in vaccinated perforin-deficient mice, Immunity, vol.18, pp.463-474, 2003.

M. B. Jordan, D. Hildeman, J. Kappler, and P. Marrack, An animal model of hemophagocytic lymphohistiocytosis (HLH): CD8 + T cells and interferon gamma are essential for the disorder, Blood, vol.104, pp.735-743, 2004.

K. Crozat, Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis, J Exp Med, vol.204, pp.853-863, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165505

P. Schmid and J. , A Griscelli syndrome type 2 murine model of hemophagocytic lymphohistiocytosis (HLH), Eur J Immunol, vol.38, pp.3219-3225, 2008.

K. Mazodier, Severe imbalance of IL-18 ? IL-18BP in patients with secondary hemophagocytic syndrome, Blood, vol.106, pp.3483-3489, 2005.

J. F. Huang, TCR-Mediated internalization of peptide-MHC complexes acquired by T cells, Science, vol.286, pp.952-954, 1999.

D. Hudrisier, J. Riond, H. Mazarguil, J. E. Gairin, and J. E. , Cutting edge: CTLs rapidly capture membrane fragments from target cells in a TCR signaling-dependent manner, J Immunol, vol.166, pp.3645-3649, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00092648

W. J. Grossman, J. W. Verbsky, W. Barchet, M. Colonna, J. P. Atkinson et al., Human T regulatory cells can use the perforin pathway to cause autologous target cell death, Immunity, vol.21, pp.589-601, 2004.

L. P. Ho, B. C. Urban, L. Jones, G. S. Ogg, and A. J. Mcmichael, CD4(-)CD8alphaalpha subset of CD1d-restricted NKT cells controls T cell expansion, J Immunol, vol.172, pp.7350-7358, 2004.

P. Schmid and J. , Neutralization of IFNg defeats hemophagocytosis in LCMV-infected perforin-and Rab27a-deficient mice, EMBO Mol Med, vol.1, pp.112-124, 2009.

J. I. Henter, HLH-2004: Diagnostic and therapeutic guidelines for hemophagocytic lymphohistiocytosis, Pediatr Blood Cancer, vol.48, pp.124-131, 2007.

N. Mahlaoui, Immunotherapy of familial hemophagocytic lymphohistiocytosis with antithymocyte globulins: a single-center retrospective report of 38 patients, Pediatrics, vol.120, pp.622-628, 2007.

F. Rieux-laucat, A. Fischer, and F. L. Deist, Celldeath signaling and human disease, Curr Opin Immunol, vol.15, pp.325-331, 2003.

N. Bidere, H. C. Su, and M. J. Lenardo, Genetic disorders of programmed cell death in the immune system, Annu Rev Immunol, vol.24, pp.321-352, 2006.

C. Terrell, E. Zoller, and M. Jordan, Perforin-Dependent Cytotoxicity Regulates the Immune Response in Trans: How Much Donor Chimerism is Enough?, 2009.

M. J. Smyth, K. Y. Thia, S. E. Street, D. Macgregor, D. I. Godfrey et al., Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma, J Exp Med, vol.192, pp.755-760, 2000.

P. Bolitho, Perforin-mediated suppression of B-cell lymphoma, Proc Natl Acad Sci, vol.106, pp.2723-2728, 2009.

S. Cannella, Germline mutations of the perforin gene are a frequent occurrence in childhood anaplastic large cell lymphoma, Cancer, vol.109, pp.2566-2571, 2007.

P. A. Mehta, Perforin polymorphism A91V and susceptibility to B-precursor childhood acute lymphoblastic leukemia: a report from the Children's Oncology Group, Leukemia, vol.20, pp.1539-1541, 2006.

R. Clementi, A proportion of patients with lymphoma may harbor mutations of the perforin gene, Blood, vol.105, pp.4424-4428, 2005.