W. R. Heath and F. R. Carbone, Cross-presentation in viral immunity and self-tolerance, Nature Rev. Immunol, vol.1, pp.126-134, 2001.

J. S. Orange, Formation and function of the lytic NK-cell immunological synapse, Nature Rev. Immunol, vol.8, pp.713-725, 2008.

R. M. Siegel, F. K. Chan, H. J. Chun, and M. J. Lenardo, The multifaceted role of Fas signaling in immune cell homeostasis and autoimmunity, Nature Immunol, vol.1, pp.469-474, 2000.

F. Rieux-laucat, A. Fischer, and F. L. Deist, Cell-death signaling and human disease, Curr. Opin. Immunol, vol.15, pp.325-331, 2003.

G. De-saint-basile and A. Fischer, The role of cytotoxicity in lymphocyte homeostasis, Curr. Opin. Immunol, vol.13, pp.549-554, 2001.

G. Menasche, J. Feldmann, A. Fischer, . De-saint, and G. Basile, Primary hemophagocytic syndromes point to a direct link between lymphocyte cytotoxicity and homeostasis, Immunol. Rev, vol.203, pp.165-179, 2005.

P. Bolitho, Perforin-mediated suppression of B-cell lymphoma, Proc. Natl Acad. Sci. USA, vol.106, pp.2723-2728, 2009.

J. Chia, Temperature sensitivity of human perforin mutants unmasks subtotal loss of cytotoxicity, delayed FHL, and a predisposition to cancer, Proc. Natl Acad. Sci. USA, vol.106, pp.9809-9814, 2009.

A. Grakoui, The immunological synapse: a molecular machine controlling T cell activation, Science, vol.285, pp.221-227, 1999.

J. C. Stinchcombe, G. Bossi, S. Booth, and G. M. Griffiths, The immunological synapse of CTL contains a secretory domain and membrane bridges, Immunity, vol.15, pp.751-761, 2001.

A. M. Beal, Protein kinase C? regulates stability of the peripheral adhesion ring junction and contributes to the sensitivity of target cell lysis by CTL, J. Immunol, vol.181, pp.4815-4824, 2008.

M. Faroudi, Lytic versus stimulatory synapse in cytotoxic T lymphocyte/target cell interaction: manifestation of a dual activation threshold, Proc. Natl Acad. Sci. USA, vol.100, pp.14145-14150, 2003.

M. A. Purbhoo, D. J. Irvine, J. B. Huppa, and M. M. Davis, References 12 and 13 report that the engagement of a few TCRs is sufficient to trigger cytotoxic activity of CTLs, Nature Immunol, vol.5, pp.524-530, 2004.

I. Voskoboinik, M. J. Smyth, and J. A. Trapani, Perforinmediated target-cell death and immune homeostasis, Nature Rev. Immunol, vol.6, pp.940-952, 2006.

E. J. Blott and G. M. Griffiths, Secretory lysosomes, Nature Rev. Mol. Cell Biol, vol.3, pp.122-131, 2002.

J. K. Burkhardt, S. Hester, C. K. Lapham, and Y. Argon, The lytic granules of natural killer cells are dual-function organelles combining secretory and pre-lysosomal compartments, J. Cell Biol, vol.111, pp.2327-2340, 1990.

P. J. Peters, Cytotoxic T lymphocyte granules are secretory lysosomes, containing both perforin and granzymes, J. Exp. Med, vol.173, pp.1099-1109, 1991.

G. Raposo, M. S. Marks, and D. F. Cutler, Lysosomerelated organelles: driving post-Golgi compartments into specialisation, Curr. Opin. Cell Biol, vol.19, pp.394-401, 2007.

J. Gruenberg, The endocytic pathway: a mosaic of domains, Nature Rev. Mol. Cell Biol, vol.2, pp.721-730, 2001.

R. L. Williams and S. Urbe, The emerging shape of the ESCRT machinery, Nature Rev. Mol. Cell Biol, vol.8, pp.355-368, 2007.

K. G. Bache, A. Brech, A. Mehlum, and H. Stenmark, Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes, J. Cell Biol, vol.162, pp.435-442, 2003.

J. H. Hurley, ESCRT complexes and the biogenesis of multivesicular bodies, Curr. Opin. Cell Biol, vol.20, pp.4-11, 2008.

J. C. Stinchcombe, L. J. Page, and G. M. Griffiths, Secretory lysosome biogenesis in cytotoxic T lymphocytes from normal and Chediak Higashi syndrome patients, Traffic, vol.1, pp.435-444, 2000.

D. Kaiserman, The major human and mouse granzymes are structurally and functionally divergent, J. Cell Biol, vol.175, pp.619-630, 2006.

D. Martinvalet, D. M. Dykxhoorn, R. Ferrini, and J. Lieberman, Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death, Cell, vol.133, pp.681-692, 2008.

J. Pardo, The biology of cytotoxic cell granule exocytosis pathway: granzymes have evolved to induce cell death and inflammation, Microbes Infect, vol.11, pp.452-459, 2009.

G. M. Griffiths and S. Isaaz, Granzymes A and B are targeted to the lytic granules of lymphocytes by the mannose-6-phosphate receptor, J. Cell Biol, vol.120, pp.885-896, 1993.

I. Voskoboinik, Calcium-dependent plasma membrane binding and cell lysis by perforin are mediated through its C2 domain: A critical role for aspartate residues 429, 435, 483, and 485 but not 491, J. Biol. Chem, vol.280, pp.8426-8434, 2005.

L. Feng, The ?3A subunit gene (Ap3b1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlak syndrome and night blindness, Hum. Mol. Genet, vol.8, pp.323-330, 1999.

R. H. Clark, Adaptor protein 3-dependent microtubule-mediated movement of lytic granules to the immunological synapse, Nature Immunol, vol.4, pp.1111-1120, 2003.

D. M. Ward, G. M. Griffiths, J. C. Stinchcombe, and J. Kaplan, Analysis of the lysosomal storage disease Chediak-Higashi syndrome, Traffic, vol.1, pp.816-822, 2000.

M. Huizing, Y. Anikster, and W. A. Gahl, Hermansky-Pudlak syndrome and related disorders of organelle formation, Traffic, vol.1, pp.823-835, 2000.

R. A. Spritz, Molecular genetics of the Hermansky-Pudlak and Chediak-Higashi syndromes, Platelets, vol.9, pp.21-29, 2006.

M. Huizing, R. E. Boissy, and W. A. Gahl, Hermansky-Pudlak syndrome: vesicle formation from yeast to man, Pigment Cell Res, vol.15, pp.405-419, 2002.

D. L. Nagle, Identification and mutation analysis of the complete gene for Chediak-Higashi syndrome, Nature Genet, vol.14, pp.307-311, 1996.

M. D. Barbosa, Identification of the homologous beige and Chediak-Higashi syndrome genes, Nature, vol.382, pp.262-265, 1996.

S. Martens and H. T. Mcmahon, Mechanisms of membrane fusion: disparate players and common principles, Nature Rev. Mol. Cell Biol, vol.9, pp.543-556, 2008.

Y. Su, Neurobeachin is essential for neuromuscular synaptic transmission, J. Neurosci, vol.24, pp.3627-3636, 2004.

V. T. Tchernev, This study reports two hybrid screens and biochemical approaches, allowing the identification of various proteins that, Mol. Med, vol.8, pp.56-64, 2002.

S. Shim, S. A. Merrill, and P. I. Hanson, Novel interactions of ESCRT-III with LIP5 and VPS4 and their implications for ESCRT-III disassembly, Mol. Biol. Cell, vol.19, pp.2661-2672, 2008.

W. Faigle, Deficient peptide loading and MHC class II endosomal sorting in a human genetic immunodeficiency disease: the Chediak-Higashi syndrome, J. Cell Biol, vol.141, pp.1121-1134, 1998.

J. Kwong, Hrs interacts with SNAP-25 and regulates Ca 2+ -dependent exocytosis, J. Cell Sci, vol.113, pp.2273-2284, 2000.

A. Burgess, J. P. Mornon, G. De-saint-basile, and I. Callebaut, A concanavalin A-like lectin domain in the CHS1/LYST protein, shared by members of the BEACH family, Bioinformatics, vol.25, pp.1219-1222, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00383218

M. Tardieu, Progressive neurologic dysfunctions 20 years after allogeneic bone marrow transplantation for Chediak-Higashi syndrome, Blood, vol.106, pp.40-42, 2005.

A. Enders, Lethal hemophagocytic lymphohistiocytosis in Hermansky-Pudlak syndrome type II, Blood, vol.108, pp.81-87, 2006.

E. C. Dell'angelica, AP-3: an adaptor-like protein complex with ubiquitous expression, EMBO J, vol.16, pp.917-928, 1997.

C. Ruder, EBAG9 adds a new layer of control on large dense-core vesicle exocytosis via interaction with Snapin, Mol. Biol. Cell, vol.16, pp.1245-1257, 2005.

V. Libri, Jakmip1 is expressed upon T cell differentiation and has an inhibitory function in cytotoxic T lymphocytes, J. Immunol, vol.181, pp.5847-5856, 2008.

S. Stepp, Perforin gene defects in familial hemophagocytic lymphohistiocytosis, Science, vol.286, pp.1957-1959, 1999.

C. J. Rosado, A common fold mediates vertebrate defense and bacterial attack, Science, vol.317, pp.1548-1551, 2007.

K. Baran, This study provides more insights into the mechanism of action of perforin by establishing the molecular basis for perforin oligomerization and pore assembly, Immunity, vol.30, pp.684-695, 2009.

R. Uellner, Perforin is activated by a proteolytic cleavage during biosynthesis which reveals a phospholipid-binding C2 domain, EMBO J, vol.16, pp.7287-7296, 1997.

P. Bolitho, I. Voskoboinik, J. A. Trapani, and M. J. Smyth, Apoptosis induced by the lymphocyte effector molecule perforin, Curr. Opin. Immunol, vol.19, pp.339-347, 2006.

S. P. Cullen and S. J. Martin, Mechanisms of granuledependent killing, Cell Death Differ, vol.15, pp.251-262, 2008.

P. J. Beresford, Z. Xia, A. H. Greenberg, and J. Lieberman, Granzyme A loading induces rapid cytolysis and a novel form of DNA damage independently of caspase activation, Immunity, vol.10, pp.585-594, 1999.

S. S. Metkar, Human and mouse granzyme A induce a proinflammatory cytokine response, Immunity, vol.29, pp.720-733, 2008.

J. W. Heusel, R. L. Wesselschmidt, S. Shresta, J. H. Russell, and T. J. Ley, Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells, Cell, vol.76, pp.977-987, 1994.

K. Ebnet, Granzyme A-deficient mice retain potent cell-mediated cytotoxicity, EMBO J, vol.14, pp.4230-4239, 1995.

M. M. Simon, In vitro-and ex vivo-derived cytolytic leukocytes from granzyme A x B double knockout mice are defective in granule-mediated apoptosis but not lysis of target cells, J. Exp. Med, vol.186, pp.1781-1786, 1997.

A. Mullbacher, Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes, Proc. Natl Acad. Sci. USA, vol.96, pp.13950-13955, 1999.

M. Grujic, Serglycin-deficient cytotoxic T lymphocytes display defective secretory granule maturation and granzyme B storage, J. Biol. Chem, vol.280, pp.33411-33418, 2005.

J. C. Stinchcombe, E. Majorovits, G. Bossi, S. Fuller, and G. M. Griffiths, Centrosome polarization delivers secretory granules to the immunological synapse, Nature, vol.443, pp.462-465, 2006.

, This study reports that in CTLs, cytotoxic granules that cluster around the polarized MTOC are delivered directly by the centrosome to the secretory domain of the immunological synapse

A. M. Beal, Kinetics of early T cell receptor signaling regulate the pathway of lytic granule delivery to the secretory domain, Immunity, vol.31, pp.632-642, 2009.

M. R. Jenkins, A. Tsun, J. C. Stinchcombe, and G. M. Griffiths, References 63 and 64 analyse how the strength of TCR signalling can influence the polarization of cytotoxic granules and the killing ability of CTLs, Immunity, vol.31, pp.621-631, 2009.

K. H. Lee, T cell receptor signaling precedes immunological synapse formation, Science, vol.295, pp.1539-1542, 2002.

L. K. Robertson, L. R. Mireau, and H. L. Ostergaard, A role for phosphatidylinositol 3-kinase in TCRstimulated ERK activation leading to paxillin phosphorylation and CTL degranulation, J. Immunol, vol.175, pp.8138-8145, 2005.

R. Varma, G. Campi, T. Yokosuka, T. Saito, and M. L. Dustin, T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster, Immunity, vol.25, pp.117-127, 2006.

E. J. Quann, E. Merino, T. Furuta, and M. Huse, Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells, Nature Immunol, vol.10, pp.627-635, 2009.

, This study shows that diacylglycerol has a pivotal role in polarization of the microtubule cytoskeleton

D. Sancho, The tyrosine kinase PYK-2/RAFTK regulates natural killer (NK) cell cytotoxic response, and is translocated and activated upon specific target cell recognition and killing, J. Cell Biol, vol.149, pp.1249-1262, 2000.

M. Fukata, Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170, Cell, vol.109, pp.873-885, 2002.

P. P. Banerjee, Cdc42-interacting protein-4 functionally links actin and microtubule networks at the cytolytic NK cell immunological synapse, J. Exp. Med, vol.204, pp.2305-2320, 2007.

B. Butler and J. A. Cooper, Distinct roles for the actin nucleators Arp2/3 and hDia1 during NK-mediated cytotoxicity, Curr. Biol, vol.19, pp.1886-1896, 2009.

P. Bahadoran, A key to melanosome transport in human melanocytes, J. Cell Biol, vol.152, pp.843-850, 2001.

G. Ménasché, Mutations in RAB27A cause Griscelli syndrome associated with hemophagocytic syndrome, Nature Genet, vol.25, pp.173-176, 2000.

S. M. Wilson, A mutation in Rab27a causes the vesicle transport defects observed in ashen mice, Proc. Natl Acad. Sci. USA, vol.97, pp.7933-7938, 2000.

J. B. Pereira-leal and M. C. Seabra, Evolution of the Rab family of small GTP-binding proteins, J. Mol. Biol, vol.313, pp.889-901, 2001.

J. C. Stinchcombe, Rab27a is required for regulated secretion in cytotoxic T lymphocytes, J. Cell Biol, vol.152, pp.825-834, 2001.

E. K. Haddad, X. Wu, J. A. Hammer, and P. A. Henkart, Defective granule exocytosis in RAB27a-deficient lymphocytes from ashen mice, J. Cell Biol, vol.152, pp.835-842, 2001.

G. Menasche, A newly identified isoform of Slp2a associates with Rab27a in cytotoxic T cells and participates to cytotoxic granule secretion, Blood, vol.112, pp.5052-5062, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-02440327

O. Holt, References 79 and 80 report that SLP1 and SLP2 are two effectors of RAB27a expressed by CTLs that participate in the exocytosis of cytotoxic granules, Traffic, vol.9, pp.446-457, 2008.

G. Menasche, Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1)

, J. Clin. Invest, vol.112, pp.450-456, 2003.

X. S. Wu, Identification of an organelle receptor for myosin-Va, Nature Cell Biol, vol.4, pp.271-278, 2002.

J. Feldmann, Munc13-4 is essential for cytolytic granules fusion and is mutated in a form of familial hemophagocytic lymphohistiocytosis (FHL3), Cell, vol.115, pp.461-473, 2003.

K. Crozat, Jinx, an MCMV susceptibility phenotype caused by disruption of Unc13d: a mouse model of type 3 familial hemophagocytic lymphohistiocytosis, J. Exp. Med, vol.204, pp.853-863, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00165505

M. M. Menager, Secretory cytotoxic granule maturation and exocytosis require the effector protein hMunc13-4, Nature Immunol, vol.8, pp.257-267, 2007.

S. M. Wood, References 83, 84 and 86 describe two roles for MUNC13-4 in the formation of exocytic vesicles and in the priming of cytotoxic granules at the immunological synapse, Blood, vol.114, pp.4117-4127, 2009.

P. I. Hanson, R. Roth, H. Morisaki, R. Jahn, and J. E. Heuser, Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy, Cell, vol.90, pp.523-535, 1997.

T. Weber, SNAREpins: minimal machinery for membrane fusion, Cell, vol.92, pp.759-772, 1998.

R. Jahn and R. H. Scheller, SNAREs -engines for membrane fusion, Nature Rev. Mol. Cell Biol, vol.7, pp.631-643, 2006.

U. Zur-stadt, Linkage of familial hemophagocytic lymphohistiocytosis (FHL) type-4 to chromosome 6q24 and identification of mutations in syntaxin 11, Hum. Mol. Genet, vol.14, pp.827-834, 2005.

Y. T. Bryceson, Defective cytotoxic lymphocyte degranulation in syntaxin-11 deficient familial hemophagocytic lymphohistiocytosis 4 (FHL4) patients, Blood, vol.110, pp.1906-1915, 2007.

Y. Hata, C. A. Slaughter, and T. C. Sudhof, Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin, Nature, vol.366, pp.347-351, 1993.

Y. Hata and T. C. Sudhof, Use of the yeast two-hybrid system to study interactions between proteins involved in membrane traffic, J. Biol. Chem, vol.270, pp.13022-13028, 1995.

M. Cote, Munc18-2 deficiency causes familial hemophagocytic lymphohistiocytosis type 5 and impairs cytotoxic granule exocytosis in patient NK cells, J. Clin. Invest, vol.119, pp.3765-3773, 2009.

U. Zur-stadt, Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11, Am. J. Hum. Genet, vol.85, pp.482-492, 2009.

K. Riento, M. Kauppi, S. Keranen, and V. M. Olkkonen, Munc18-2, a functional partner of syntaxin 3, controls apical membrane trafficking in epithelial cells, J. Biol. Chem, vol.275, pp.13476-13483, 2000.

J. Rizo and T. C. Sudhof, Snares and Munc18 in synaptic vesicle fusion, Nature Rev. Neurosci, vol.3, pp.641-653, 2002.

R. F. Toonen and M. Verhage, Vesicle trafficking: pleasure and pain from SM genes, Trends Cell Biol, vol.13, pp.177-186, 2003.

R. F. Toonen and M. Verhage, Munc18-1 in secretion: lonely Munc joins SNARE team and takes control, Trends Neurosci, vol.30, pp.564-572, 2007.

J. Herz, Acid sphingomyelinase is a key regulator of cytotoxic granule secretion by primary T lymphocytes, Nature Immunol, vol.10, pp.761-768, 2009.

D. Liu, Integrin-dependent organization and bidirectional vesicular traffic at cytotoxic immune synapses, Immunity, vol.31, pp.99-109, 2009.

E. D. Gundelfinger, M. M. Kessels, and B. Qualmann, Temporal and spatial coordination of exocytosis and endocytosis, Nature Rev. Mol. Cell Biol, vol.4, pp.127-139, 2003.

T. C. Sudhof, The synaptic vesicle cycle, Annu. Rev. Neurosci, vol.27, pp.509-547, 2004.

S. Schoch and E. D. Gundelfinger, Molecular organization of the presynaptic active zone, Cell Tissue Res, vol.326, pp.379-391, 2006.

A. Gulyas-kovacs, Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming, J. Neurosci, vol.27, pp.8676-8686, 2007.

H. De-wit, This study identifies synaptotagmin 1, the Ca 2+ sensor for exocytosis of synaptic vesicles, as the vesicular docking partner that together with SNAP25, MUNC18-1 and syntaxin 1 forms the minimal docking complex, Cell, vol.138, pp.935-946, 2009.

J. Shen, D. C. Tareste, F. Paumet, J. E. Rothman, and T. J. Melia, Selective activation of cognate SNAREpins by Sec1/Munc18 proteins, Cell, vol.128, pp.183-195, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-02296593

T. C. Sudhof and J. E. Rothman, Membrane fusion: grappling with SNARE and SM proteins, Science, vol.323, pp.474-477, 2009.

, A recent review on the complex molecular mechanisms that regulate synaptic vesicle exocytosis

W. Hong, Cytotoxic T lymphocyte exocytosis: bring on the SNAREs!, Trends Cell Biol, vol.15, pp.644-650, 2005.

L. S. Loo, A role for endobrevin/VAMP8 in CTL lytic granule exocytosis, Eur. J. Immunol, vol.39, pp.3520-3528, 2009.

A. C. Valdez, J. P. Cabaniols, M. J. Brown, and P. A. Roche, Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network, J. Cell Sci, vol.112, pp.845-854, 1999.

K. T. Fowler, N. W. Andrews, and J. W. Huleatt, Expression and function of synaptotagmin VII in CTLs, J. Immunol, vol.178, pp.1498-1504, 2007.

M. I. Lioudyno, Orai1 and STIM1 move to the immunological synapse and are up-regulated during T cell activation, Proc. Natl Acad. Sci. USA, vol.105, pp.2011-2016, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02438096

V. A. Barr, Dynamic movement of the calcium sensor STIM1 and the calcium channel Orai1 in activated T-cells: puncta and distal caps, Mol. Biol. Cell, vol.19, pp.2802-2817, 2008.