A. Vincent, Unravelling the pathogenesis of myasthenia gravis, Nat Rev Immunol, vol.2, pp.797-804, 2002.

S. Berrih-aknin, M. Frenkian-cuvelier, and B. Eymard, Diagnostic and clinical classification of autoimmune myasthenia gravis, J Autoimmun, pp.143-151, 2014.

W. D. Phillips and A. Vincent, Pathogenesis of myasthenia gravis: update on disease types, models, and mechanisms, vol.5, pp.1-10, 2016.

G. Kordas, G. Lagoumintzis, S. Sideris, K. Poulas, and S. J. Tzartos, Direct proof of the in vivo pathogenic role of the AChR autoantibodies from myasthenia gravis patients, PLoS ONE, vol.9, p.108327, 2014.

W. Hoch, J. Mcconville, S. Helms, J. Newsom-davis, A. Melms et al., Autoantibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies, Nat Med, vol.7, pp.365-373, 2001.

A. Pevzner, B. Schoser, K. Peters, N. C. Cosma, A. Karakatsani et al., Anti-LRP4 autoantibodies in AChR-and MuSKantibody-negative myasthenia gravis, J Neurol, vol.259, pp.427-462, 2012.

B. Zhang, J. S. Tzartos, M. Belimezi, S. Ragheb, B. Bealmear et al., Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis, Arch Neurol, vol.69, pp.445-51, 2012.

J. Patrick and J. Lindstrom, Autoimmune response to acetylcholine receptor, Science, vol.180, pp.871-873, 1973.

L. Delpy, V. Douin-echinard, L. Garidou, C. Bruand, A. Saoudi et al., Estrogen enhances susceptibility to experimental autoimmune myasthenia gravis by promoting type 1-polarized immune responses, J Immunol, vol.175, pp.5050-5057, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00458865

M. Giraud, C. Vandiedonck, and H. J. Garchon, Genetic factors in autoimmune myasthenia gravis, Ann N Y Acad Sci, vol.1132, pp.180-92, 2008.

A. E. Renton, H. A. Pliner, C. Provenzano, A. Evoli, R. Ricciardi et al., A genome-wide association study of myasthenia gravis, JAMA Neurol, vol.72, pp.396-404, 2015.

C. Vandiedonck, C. Capdevielle, M. Giraud, S. Krumeich, J. P. Jais et al., Association of the PTPN22 * R620W polymorphism with autoimmune myasthenia gravis, Ann Neurol, vol.59, pp.404-411, 2006.

B. Greve, P. Hoffmann, Z. Illes, C. Rozsa, K. Berger et al., The autoimmunity-related polymorphism PTPN22 1858C/T is associated with anti-titin antibody-positive myasthenia gravis, Hum Immunol, vol.70, pp.540-542, 2009.

P. K. Gregersen, R. Kosoy, A. T. Lee, J. Lamb, J. Sussman et al., Risk for myasthenia gravis maps to a (151) Pro->Ala change in TNIP1 and to human leukocyte antigen-B * 08, Ann Neurol, vol.72, pp.927-962, 2012.

X. B. Wang, M. Kakoulidou, Q. Qiu, R. Giscombe, D. Huang et al., CDS1 and promoter single nucleotide polymorphisms of the CTLA-4 gene in human myasthenia gravis, Genes Immun, vol.3, pp.46-55, 2002.

W. Y. Chuang, P. Strobel, R. Gold, W. Nix, B. Schalke et al., A CTLA4high genotype is associated with myasthenia gravis in thymoma patients, Ann Neurol, vol.58, pp.644-652, 2005.

N. Avidan, L. Panse, R. Harbo, H. F. Bernasconi, P. Poulas et al., VAV1 and BAFF, via NFkappaB pathway, are genetic risk factors for myasthenia gravis, Ann Clin Transl Neurol, vol.1, pp.329-368, 2014.

K. D. Fischer, A. Zmuldzinas, S. Gardner, M. Barbacid, A. Bernstein et al., Defective T-cell receptor signalling and positive selection of Vav-deficient CD4 + CD8 + thymocytes, Nature, vol.374, pp.474-481, 1995.

A. Tarakhovsky, M. Turner, S. Schaal, P. J. Mee, L. P. Duddy et al., Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav, Nature, vol.374, pp.467-70, 1995.

R. Zhang, F. W. Alt, L. Davidson, S. H. Orkin, and W. Swat, Defective signalling through the T-and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene, Nature, vol.374, pp.470-473, 1995.

M. Turner, P. J. Mee, A. E. Walters, M. E. Quinn, A. L. Mellor et al., A requirement for the Rho-family GTP exchange factor Vav in positive and negative selection of thymocytes, Immunity, vol.7, pp.451-60, 1997.

V. L. Tybulewicz, Vav-family proteins in T-cell signalling, Curr Opin Immunol, vol.17, pp.267-74, 2005.

K. D. Fischer, Y. Y. Kong, H. Nishina, K. Tedford, L. E. Marengere et al., Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor, Curr Biol, vol.8, pp.554-62, 1998.

P. S. Costello, A. E. Walters, P. J. Mee, M. Turner, L. F. Reynolds et al., The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways, Proc Natl Acad Sci, vol.96, pp.3035-3075, 1999.

A. Saveliev, L. Vanes, O. Ksionda, J. Rapley, S. J. Smerdon et al., Function of the nucleotide exchange activity of vav1 in T cell development and activation, Sci Signal, vol.2, p.83, 2009.

S. Kassem, G. Gaud, I. Bernard, M. Benamar, A. S. Dejean et al., A natural variant of the T cell receptor-signaling molecule Vav1 reduces both effector T cell functions and susceptibility to neuroinflammation, PLoS Genet, vol.12, p.1006185, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438135

C. Colacios, A. Casemayou, A. S. Dejean, F. Gaits-iacovoni, C. Pedros et al., The p.Arg63Trp polymorphism controls Vav1 functions and Foxp3 regulatory T cell development, J Exp Med, vol.208, pp.2183-91, 2011.

J. Lindstrom, B. Einarson, and S. Tzartos, Production and assay of antibodies to acetylcholine receptors, Methods Enzymol, pp.432-60, 1981.

A. Saoudi, I. Bernard, A. Hoedemaekers, B. Cautain, K. Martinez et al., Experimental autoimmune myasthenia gravis may occur in the context of a polarized Th1-or Th2-type immune response in rats, J Immunol, vol.162, pp.7189-97, 1999.

D. Huang, F. D. Shi, R. Giscombe, Y. Zhou, H. G. Ljunggren et al., Disruption of the IL-1beta gene diminishes acetylcholine receptor-induced immune responses in a murine model of myasthenia gravis, Eur J Immunol, vol.31, pp.225-257, 2001.

W. Wang, N. S. Ostlie, B. M. Conti-fine, and M. Milani, The susceptibility to experimental myasthenia gravis of STAT6 ?/? and STAT4 ?/? BALB/c mice suggests a pathogenic role of Th1 cells, J Immunol, vol.172, pp.97-103, 2004.

B. Balasa, C. S. Deng, J. Lee, L. M. Bradley, D. K. Dalton et al., Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice, J Exp Med, vol.186, pp.385-91, 1997.

M. Moiola, F. Galbiati, G. Martino, S. Amadio, E. Brambilla et al., IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease, Eur J Immunol, vol.28, pp.2487-97, 1998.

J. C. Roche, J. L. Capablo, L. Larrad, J. Gervas-arruga, J. R. Ara et al., Increased serum interleukin-17 levels in patients with myasthenia gravis, Muscle Nerve, vol.44, pp.278-80, 2011.

H. Schaffert, A. Pelz, A. Saxena, M. Losen, A. Meisel et al., IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis, Eur J Immunol, vol.45, pp.1339-1386, 2015.

Y. Cao, R. A. Amezquita, S. H. Kleinstein, P. Stathopoulos, R. J. Nowak et al., Autoreactive T cells from patients with myasthenia gravis are characterized by elevated IL-17, IFN-gamma, and GM-CSF and diminished IL-10 production, J Immunol, vol.196, pp.2075-84, 2016.

G. Aguilo-seara, Y. C. Xie, J. Sheehan, L. L. Kusner, and H. J. Kaminski, Ablation of IL-17 expression moderates experimental autoimmune myasthenia gravis disease severity, Cytokine, vol.96, pp.279-85, 2017.

H. Yamane and W. E. Paul, Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets, Immunol Rev, vol.252, pp.12-23, 2013.

N. J. Tubo and M. K. Jenkins, TCR signal quantity and quality in CD4(+) T cell differentiation, Trends Immunol, vol.35, pp.591-597, 2014.

N. Van-panhuys, F. Klauschen, and R. N. Germain, T-cell-receptor-dependent signal intensity dominantly controls CD4(+) T cell polarization in vivo, Immunity, vol.41, pp.63-74, 2014.

P. J. Jorritsma, J. L. Brogdon, and K. Bottomly, Role of TCR-induced extracellular signal-regulated kinase activation in the regulation of early IL-4 expression in naive CD4(+) T cells, J Immunol, vol.170, pp.2427-2461, 2003.

H. Yamane, J. F. Zhu, and W. E. Paul, Independent roles for IL-2 and GATA-3 in stimulating naive CD4(+) T cells to generate a Th2-inducing cytokine environment, J Exp Med, vol.202, pp.793-804, 2005.

X. Liu and R. Bosselut, Duration of TCR signaling controls CD4-CD8 lineage differentiation in vivo, Nat Immunol, vol.5, pp.280-288, 2004.

M. Jagodic, C. Colacios, R. Nohra, A. S. Dejean, A. D. Beyeen et al., A role for VAV1 in experimental autoimmune encephalomyelitis and multiple sclerosis, Sci Transl Med, vol.1, pp.10-21, 2009.

A. O. Guerreiro-cacais, U. Norin, A. Gyllenberg, R. Berglund, A. D. Beyeen et al., VAV1 regulates experimental autoimmune arthritis and is associated with anti-CCP negative rheumatoid arthritis, Genes Immun, vol.18, pp.48-56, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02084423