T. Pringsheim, N. Jette, A. Frolkis, and T. D. Steeves, The prevalence of Parkinson's disease: A systematic review and meta-analysis, Mov. Disord, vol.29, pp.1583-1590, 2014.

H. Mccann, C. H. Stevens, H. Cartwright, and G. Halliday, Synucleinopathy phenotypes, vol.20, pp.62-67, 2014.

F. N. Emamzadeh and A. Surguchov, Parkinson's Disease: Biomarkers, Treatment, and Risk Factors, Front. Neurosci, vol.12, p.612, 2018.

H. Snyder, K. Mensah, C. Hsu, M. Hashimoto, I. G. Surgucheva et al., beta-Synuclein reduces proteasomal inhibition by alpha-synuclein but not gamma-synuclein, J. Biol. Chem, vol.280, pp.7562-7569, 2005.

P. Rivero-rios, J. Madero-perez, B. Fernandez, and S. Hilfiker, Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson's Disease, Curr. Neuropharmacol, vol.14, pp.238-249, 2016.

A. Scrivo, M. Bourdenx, O. Pampliega, and A. M. Cuervo, Selective autophagy as a potential therapeutic target for neurodegenerative disorders, Lancet Neurol, vol.17, pp.802-815, 2018.

M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia et al., Mutation in the alpha-synuclein gene identified in families with Parkinson's disease, Science, vol.276, pp.2045-2047, 1997.

R. Kruger, W. Kuhn, T. Muller, D. Woitalla, M. Graeber et al., Riess, O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson's disease, Nat. Genet, vol.18, pp.106-108, 1998.

J. J. Zarranz, J. Alegre, J. C. Gomez-esteban, E. Lezcano, R. Ros et al., The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia, Ann. Neurol, vol.55, pp.164-173, 2004.

J. Q. 1yan, Y. H. Yuan, S. F. Chu, G. H. Li, and N. H. Chen, E46K Mutant alpha-Synuclein Is Degraded by Both Proteasome and Macroautophagy Pathway, Molecules, vol.23, 2018.

Z. 1lei, G. Cao, and G. Wei, A30P mutant alpha-synuclein impairs autophagic flux by inactivating JNK signaling to enhance ZKSCAN3 activity in midbrain dopaminergic neurons, Cell Death Dis, vol.10, p.133, 2019.

V. Choubey, D. Safiulina, A. Vaarmann, M. Cagalinec, P. Wareski et al., Mutant A53T alpha-synuclein induces neuronal death by increasing mitochondrial autophagy, J. Biol. Chem, vol.286, pp.10814-10824, 2011.

A. Zimprich, S. Biskup, P. Leitner, P. Lichtner, M. Farrer et al., Mutations in LRRK2 Cause Autosomal-Dominant Parkinsonism with Pleomorphic Pathology, Neuron, vol.44, pp.601-607, 2004.

I. Martin, J. W. Kim, V. L. Dawson, and T. M. Dawson, LRRK2 pathobiology in Parkinson's disease, J. Neurochem, vol.131, pp.554-565, 2014.

S. Lesage, A. Dürr, M. Tazir, E. Lohmann, A. Leutenegger et al., LRRK2 G2019S as a Cause of Parkinson's Disease in North African Arabs, N. Engl. J. Med, vol.354, pp.422-423, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00221453

A. Ramirez, A. Heimbach, J. Grundemann, B. Stiller, D. Hampshire et al., Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase, Nat. Genet, vol.38, pp.1184-1191, 2006.

S. Edvardson, Y. Cinnamon, A. Ta-shma, A. Shaag, Y. I. Yim et al., A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism, PLoS ONE, vol.7, 2012.

H. Deng, P. Wang, and J. Jankovic, The genetics of Parkinson disease, Ageing Res. Rev, vol.42, pp.72-85, 2018.

E. K. Gustavsson, J. Trinh, I. Guella, C. Vilarino-guell, S. Appel-cresswell et al., Mov. Disord, vol.30, pp.273-278, 2015.

N. Hattori, T. Kitada, H. Matsumine, S. Asakawa, Y. Yamamura et al., Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals, Ann. Neurol, vol.44, pp.935-941, 1998.

N. Hattori, H. Matsumine, S. Asakawa, T. Kitada, H. Yoshino et al., Point Mutations (Thr240Arg and Ala311Stop) in theParkinGene, Biochem. Biophys. Res. Commun, vol.249, pp.754-758, 1998.

T. Kitada, S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura et al., Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism, Nature, vol.392, pp.605-608, 1998.

E. Leroy, D. Anastasopoulos, S. Konitsiotis, C. Lavedan, and M. H. Polymeropoulos, Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson's disease, Hum. Genet, vol.103, pp.424-427, 1998.

C. B. Lücking, N. Abbas, A. Dürr, V. Bonifati, A. M. Bonnet et al., Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism, Lancet, vol.352, pp.1355-1356, 1998.

H. Matsumine, M. Saito, S. Shimoda-matsubayashi, H. Tanaka, A. Ishikawa et al., Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27, Am. J. Hum. Genet, vol.60, pp.588-596, 1997.

E. M. Valente, A. R. Bentivoglio, P. H. Dixon, A. Ferraris, T. Ialongo et al., Localization of a Novel Locus for Autosomal Recessive Early-Onset Parkinsonism, PARK6, on Human Chromosome 1p35-p36, Am. J. Hum. Genet, vol.68, pp.895-900, 2001.

E. M. Valente, F. Brancati, V. Caputo, E. A. Graham, M. B. Davis et al., PARK6 is a common cause of familial parkinsonism, Neurol. Sci, vol.23, pp.117-118, 2002.

E. M. Valente, F. Brancati, A. Ferraris, E. A. Graham, M. B. Davis et al., Park6-linked parkinsonism occurs in several european families, Ann. Neurol, vol.51, pp.14-18, 2002.

V. Bonifati, P. Rizzu, M. J. Van-baren, O. Schaap, G. J. Breedveld et al., Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism, vol.299, pp.256-259, 2003.

C. M. Van-duijn, M. C. Dekker, V. Bonifati, R. J. Galjaard, J. J. Houwing-duistermaat et al., Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36, Am. J. Hum. Genet, vol.69, pp.629-634, 2001.

K. S. Hruska, M. E. Lamarca, C. R. Scott, and E. Sidransky, Gaucher disease: Mutation and polymorphism spectrum in the glucocerebrosidase gene (GBA), Hum. Mutat, vol.29, pp.567-583, 2008.

J. Neumann, J. Bras, E. Deas, S. S. O'sullivan, L. Parkkinen et al., Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease, Brain, vol.132, pp.1783-1794, 2009.

E. Sidransky, M. A. Nalls, J. O. Aasly, J. Aharon-peretz, G. Annesi et al., Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson's Disease, N. Engl. J. Med, vol.361, pp.1651-1661, 2009.

L. A. Robak, I. E. Jansen, J. Van-rooij, A. G. Uitterlinden, R. Kraaij et al., Excessive burden of lysosomal storage disorder gene variants in Parkinson's disease, vol.140, pp.3191-3203, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01690979

P. Anglade, S. Vyas, F. Javoy-agid, M. Herrero, P. Michel et al., Apoptosis and Autophagy in Nigral Neurons of Patients with Parkinson's Disease, Histol. Histopathol, vol.12, pp.25-31, 1997.

L. Alvarez-erviti, M. C. Rodriguez-oroz, J. M. Cooper, C. Caballero, I. Ferrer et al., Chaperone-mediated autophagy markers in Parkinson disease brains, Arch. Neurol, vol.67, pp.1464-1472, 2010.

K. Tanji, F. Mori, A. Kakita, H. Takahashi, and K. Wakabayashi, Alteration of autophagosomal proteins (LC3, GABARAP and GATE-16) in Lewy body disease, Neurobiol. Dis, vol.43, pp.690-697, 2011.

B. Dehay, J. Bove, N. Rodriguez-muela, C. Perier, A. Recasens et al., Pathogenic lysosomal depletion in Parkinson's disease, J. Neurosci, vol.30, pp.12535-12544, 2010.

S. Higashi, D. J. Moore, M. Minegishi, K. Kasanuki, H. Fujishiro et al., Localization of MAP1-LC3 in Vulnerable Neurons and Lewy Bodies in Brains of Patients With Dementia With Lewy Bodies, J. Neuropathol. Exp. Neurol, vol.70, pp.264-280, 2011.

L. Crews, B. Spencer, P. Desplats, C. Patrick, A. Paulino et al., Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy, PLoS ONE, vol.5, 2010.

K. Tanji, S. Odagiri, A. Maruyama, F. Mori, A. Kakita et al., Alteration of autophagosomal proteins in the brain of multiple system atrophy, Neurobiol. Dis, vol.49, pp.190-198, 2013.

L. Schwarz, O. Goldbaum, M. Bergmann, S. Probst-cousin, and C. Richter-landsberg, Involvement of macroautophagy in multiple system atrophy and protein aggregate formation in oligodendrocytes, J. Mol. Neurosci, vol.47, pp.256-266, 2012.

B. Dehay, A. Ramirez, M. Martinez-vicente, C. Perier, M. H. Canron et al., Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration, Proc. Natl. Acad. Sci, vol.109, pp.9611-9616, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01290058

T. T. Rohn and L. W. Catlin, Immunolocalization of influenza A virus and markers of inflammation in the human Parkinson's disease brain, PLoS ONE, vol.6, 2011.

N. Papagiannakis, M. Xilouri, C. Koros, A. M. Simitsi, M. Stamelou et al., Autophagy dysfunction in peripheral blood mononuclear cells of Parkinson's disease patients, Neurosci. Lett, vol.704, pp.112-115, 2019.

A. Laguna, N. Schintu, A. Nobre, A. Alvarsson, N. Volakakis et al., Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson's disease, Nat. Neurosci, vol.18, pp.826-835, 2015.

Y. Chu, H. Dodiya, P. Aebischer, C. W. Olanow, and J. H. Kordower, Alterations in lysosomal and proteasomal markers in Parkinson's disease: Relationship to alpha-synuclein inclusions, Neurobiol. Dis, vol.35, pp.385-398, 2009.

K. E. Murphy, L. Cottle, A. M. Gysbers, A. A. Cooper, and G. M. Halliday, ATP13A2 (PARK9) protein levels are reduced in brain tissue of cases with Lewy bodies, Acta Neuropathol. Commun, 2011.

K. Makioka, T. Yamazaki, M. Takatama, Y. Nakazato, and K. Okamoto, Activation and alteration of lysosomes in multiple system atrophy, Neuroreport, vol.23, pp.270-276, 2012.

G. Monzio-compagnoni, G. Kleiner, M. Samarani, M. Aureli, G. Faustini et al., Mitochondrial Dysregulation and Impaired Autophagy in iPSC-Derived Dopaminergic Neurons of Multiple System Atrophy, Stem Cell Rep, vol.11, pp.1185-1198, 2018.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, A. S. Spiro, A. Furuta et al., Lysosomal-associated membrane protein 2 isoforms are differentially affected in early Parkinson's disease, Mov. Disord, vol.30, pp.1639-1647, 2015.

Y. Chiba, S. Takei, N. Kawamura, Y. Kawaguchi, K. Sasaki et al., Immunohistochemical localization of aggresomal proteins in glial cytoplasmic inclusions in multiple system atrophy, Neuropathol. Appl. Neurobiol, vol.38, pp.559-571, 2012.

M. E. Gegg, D. Burke, S. J. Heales, J. M. Cooper, J. Hardy et al., Glucocerebrosidase deficiency in substantia nigra of parkinson disease brains, Ann. Neurol, vol.72, pp.455-463, 2012.

D. Chiasserini, S. Paciotti, P. Eusebi, E. Persichetti, A. Tasegian et al., Selective loss of glucocerebrosidase activity in sporadic Parkinson's disease and dementia with Lewy bodies, Mol. Neurodegener, vol.10, 2015.

K. E. Murphy, A. M. Gysbers, S. K. Abbott, N. Tayebi, W. S. Kim et al., Reduced glucocerebrosidase is associated with increased alpha-synuclein in sporadic Parkinson's disease, Brain, vol.137, pp.834-848, 2014.

C. Balducci, L. Pierguidi, E. Persichetti, L. Parnetti, M. Sbaragli et al., Lysosomal hydrolases in cerebrospinal fluid from subjects with Parkinson's disease, Mov. Disord, vol.22, pp.1481-1484, 2007.

L. Parnetti, D. Chiasserini, E. Persichetti, P. Eusebi, S. Varghese et al., Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson's disease, Mov. Disord, vol.29, pp.1019-1027, 2014.

K. D. Van-dijk, E. Persichetti, D. Chiasserini, P. Eusebi, T. Beccari et al., Changes in endolysosomal enzyme activities in cerebrospinal fluid of patients with Parkinson's disease, Mov. Disord, vol.28, pp.747-754, 2013.

J. Klucken, A. M. Poehler, D. Ebrahimi-fakhari, J. Schneider, S. Nuber et al., Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway, Autophagy, vol.8, pp.754-766, 2012.

M. Usenovic, E. Tresse, J. R. Mazzulli, J. P. Taylor, and D. Krainc, Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity, J. Neurosci, vol.32, pp.4240-4246, 2012.

T. Tsunemi, T. Perez-rosello, Y. Ishiguro, A. Yoroisaka, S. Jeon et al., Increased lysosomal exocytosis induced by lysosomal Ca(2+) channel agonists protects human dopaminergic neurons from alpha-synuclein toxicity, J. Neurosci, 2019.

S. Sato, T. Uchihara, T. Fukuda, S. Noda, H. Kondo et al., Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice, Sci. Rep, 2018.

J. L. Webb, B. Ravikumar, J. Atkins, and J. N. Skepper, Rubinsztein, D.C. ?-Synuclein Is Degraded by Both Autophagy and the Proteasome, J. Biol. Chem, vol.278, pp.25009-25013, 2003.

H. Lee, F. Khoshaghideh, S. Patel, and S. Lee, Clearance of ?-Synuclein Oligomeric Intermediates via the Lysosomal Degradation Pathway, J. Neurosci, vol.24, 1888.

B. Spencer, R. Potkar, M. Trejo, E. Rockenstein, C. Patrick et al., Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson's and Lewy body diseases, J. Neurosci, vol.29, pp.13578-13588, 2009.

W. H. Yu, B. Dorado, H. Y. Figueroa, L. Wang, E. Planel et al., Metabolic activity determines efficacy of macroautophagic clearance of pathological oligomeric alpha-synuclein, Am. J. Pathol, vol.175, pp.736-747, 2009.

A. M. Cuervo, L. Stefanis, R. Fredenburg, P. T. Lansbury, and D. Sulzer, Impaired Degradation of Mutant ?-Synuclein by Chaperone-Mediated Autophagy, Science, vol.305, p.1292, 2004.

S. K. Mak, A. L. Mccormack, A. B. Manning-bog, A. M. Cuervo, and D. A. Di-monte, Lysosomal degradation of alpha-synuclein in vivo, J. Biol. Chem, vol.285, pp.13621-13629, 2010.

T. Vogiatzi, M. Xilouri, K. Vekrellis, and L. Stefanis, Wild type alpha-synuclein is degraded by chaperonemediated autophagy and macroautophagy in neuronal cells, J. Biol. Chem, vol.283, pp.23542-23556, 2008.

M. Xilouri, O. R. Brekk, A. Polissidis, M. Chrysanthou-piterou, I. Kloukina et al., Impairment of chaperone-mediated autophagy induces dopaminergic neurodegeneration in rats, Autophagy, vol.12, pp.2230-2247, 2016.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, M. C. Rodriguez-oroz, J. A. Obeso et al., Influence of microRNA deregulation on chaperone-mediated autophagy and alpha-synuclein pathology in Parkinson's disease, Cell Death Dis, 2013.

G. Li, H. Yang, D. Zhu, H. Huang, G. Liu et al., Targeted suppression of chaperone-mediated autophagy by miR-320a promotes alpha-synuclein aggregation, Int. J. Mol. Sci, vol.15, pp.15845-15857, 2014.

S. Shendelman, A. Jonason, C. Martinat, T. Leete, and A. Abeliovich, DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation, PLoS Biol, 2004.

C. Y. Xu, W. Y. Kang, Y. M. Chen, T. F. Jiang, J. Zhang et al., DJ-1 Inhibits alpha-Synuclein Aggregation by Regulating Chaperone-Mediated Autophagy, Front. Aging Neurosci, vol.9, 2017.

E. J. Bae, N. Y. Yang, C. Lee, H. J. Lee, S. Kim et al., Loss of glucocerebrosidase 1 activity causes lysosomal dysfunction and alpha-synuclein aggregation, Exp. Mol. Med, vol.47, 2015.

V. Cullen, S. P. Sardi, J. Ng, Y. H. Xu, Y. Sun et al., Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing, Ann. Neurol, vol.69, pp.940-953, 2011.

J. R. Mazzulli, Y. H. Xu, Y. Sun, A. L. Knight, P. J. Mclean et al., Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies, Cell, vol.146, pp.37-52, 2011.

M. W. Cleeter, K. Y. Chau, C. Gluck, A. Mehta, D. A. Hughes et al., Glucocerebrosidase inhibition causes mitochondrial dysfunction and free radical damage, Neurochem. Int, vol.62, pp.1-7, 2013.

Y. H. Xu, Y. Sun, H. Ran, B. Quinn, D. Witte et al., Accumulation and distribution of alpha-synuclein and ubiquitin in the CNS of Gaucher disease mouse models, Mol. Genet. Metab, vol.102, pp.436-447, 2011.

H. Braak, K. Del-tredici, U. Rüb, R. A. De-vos, E. N. Jansen-steur et al., Staging of brain pathology related to sporadic Parkinson's disease, Neurobiol. Aging, vol.24, pp.197-211, 2002.

J. H. Kordower, Y. Chu, R. A. Hauser, C. W. Olanow, and T. B. Freeman, Transplanted dopaminergic neurons develop PD pathologic changes: A second case report, Mov. Disord, vol.23, pp.2303-2306, 2008.

J. Y. Li, E. Englund, J. L. Holton, D. Soulet, P. Hagell et al., Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation, Nat. Med, vol.14, pp.501-503, 2008.

I. Mendez, A. Viñuela, A. Astradsson, K. Mukhida, P. Hallett et al., Dopamine neurons implanted into people with Parkinson's disease survive without pathology for 14 years, Nat. Med, vol.14, pp.507-509, 2008.

P. Desplats, H. J. Lee, E. J. Bae, C. Patrick, E. Rockenstein et al., Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein

, Proc. Natl Acad Sci, vol.106, pp.13010-13015, 2009.

A. Recasens, B. Dehay, J. Bove, I. Carballo-carbajal, S. Dovero et al., Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys, Ann. Neurol, vol.75, pp.351-362, 2014.

F. N. Soria, O. Pampliega, M. Bourdenx, W. G. Meissner, E. Bezard et al., Exosomes, an Unmasked Culprit in Neurodegenerative Diseases, Front. Neurosci, vol.11, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01490842

G. Minakaki, S. Menges, A. Kittel, E. Emmanouilidou, I. Schaeffner et al., Autophagy inhibition promotes SNCA/alpha-synuclein release and transfer via extracellular vesicles with a hybrid autophagosome-exosome-like phenotype, Autophagy, vol.14, pp.98-119, 2018.

L. Alvarez-erviti, Y. Seow, A. H. Schapira, C. Gardiner, I. L. Sargent et al., Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission, Neurobiol. Dis, vol.42, pp.360-367, 2011.

K. M. Danzer, L. R. Kranich, W. P. Ruf, O. Cagsal-getkin, A. R. Winslow et al., Exosomal cell-to-cell transmission of alpha synuclein oligomers, Mol. Neurodegener, vol.7, p.42, 2012.

H. J. Lee, E. D. Cho, K. W. Lee, J. H. Kim, S. G. Cho et al., Autophagic failure promotes the exocytosis and intercellular transfer of alpha-synuclein, Exp. Mol. Med, vol.45, 2013.

A. M. Poehler, W. Xiang, P. Spitzer, V. E. May, H. Meixner et al., Autophagy modulates SNCA/alpha-synuclein release, thereby generating a hostile microenvironment, Autophagy, vol.10, pp.2171-2192, 2014.

T. Tsunemi, K. Hamada, and D. Krainc, ATP13A2/PARK9 regulates secretion of exosomes and alpha-synuclein, J. Neurosci, vol.34, pp.15281-15287, 2014.

S. M. Kong, B. K. Chan, J. S. Park, K. J. Hill, J. B. Aitken et al., Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes alpha-Synuclein externalization via exosomes, Hum. Mol. Genet, vol.23, pp.2816-2833, 2014.

E. J. Bae, N. Y. Yang, M. Song, C. S. Lee, J. S. Lee et al., Glucocerebrosidase depletion enhances cell-to-cell transmission of alpha-synuclein, Nat. Commun, vol.5, 2014.

L. Stefanis, K. E. Larsen, H. J. Rideout, D. Sulzer, and L. A. Greene, Expression of A53T Mutant But Not Wild-Type ?-Synuclein in PC12 Cells Induces Alterations of the Ubiquitin-Dependent Degradation System, Loss of Dopamine Release, and Autophagic Cell Death, J. Neurosci, vol.21, pp.9549-9560, 2001.

J. X. Song, J. H. Lu, L. F. Liu, L. L. Chen, S. S. Durairajan et al., HMGB1 is involved in autophagy inhibition caused by SNCA/alpha-synuclein overexpression: A process modulated by the natural autophagy inducer corynoxine B, Autophagy, vol.10, pp.144-154, 2014.

A. R. Winslow, C. W. Chen, S. Corrochano, A. Acevedo-arozena, D. E. Gordon et al., alpha-Synuclein impairs macroautophagy: Implications for Parkinson's disease, J. Cell Biol, vol.190, pp.1023-1037, 2010.

M. Xilouri, T. Vogiatzi, K. Vekrellis, D. Park, and L. Stefanis, Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy, PLoS ONE, vol.4, p.5515, 2009.

M. Martinez-vicente, Z. Talloczy, S. Kaushik, A. C. Massey, J. Mazzulli et al., Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy, J. Clin. Invest, vol.118, pp.777-788, 2008.

A. C. Hoffmann, G. Minakaki, S. Menges, R. Salvi, S. Savitskiy et al., Extracellular aggregated alpha synuclein primarily triggers lysosomal dysfunction in neural cells prevented by trehalose

Q. Yang, H. She, M. Gearing, E. Colla, M. Lee et al., Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy, Science, vol.323, pp.124-127, 2009.

J. Yan, Y. Yuan, Y. Gao, J. Huang, K. Ma et al., Overexpression of Human E46K Mutant ?-Synuclein Impairs Macroautophagy via Inactivation of JNK1-Bcl-2 Pathway, Mol. Neurobiol, vol.50, pp.685-701, 2014.

S. A. Tanik, C. E. Schultheiss, L. A. Volpicelli-daley, K. R. Brunden, and V. M. Lee, Lewy body-like alpha-synuclein aggregates resist degradation and impair macroautophagy, J. Biol. Chem, vol.288, pp.15194-15210, 2013.

D. Freeman, R. Cedillos, S. Choyke, Z. Lukic, K. Mcguire et al., Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis, PLoS ONE, vol.8, 2013.

A. N. Stefanovic, M. T. Stockl, M. M. Claessens, and V. Subramaniam, Synuclein oligomers distinctively permeabilize complex model membranes, FEBS J, vol.281, pp.2838-2850, 2014.

J. R. Mazzulli, F. Zunke, O. Isacson, and L. Studer, Krainc, D. alpha-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models, Proc. Natl. Acad. Sci, vol.113, pp.1931-1936, 2016.

T. L. Yap, J. M. Gruschus, A. Velayati, W. Westbroek, E. Goldin et al., Alpha-synuclein interacts with Glucocerebrosidase providing a molecular link between Parkinson and Gaucher diseases, J. Biol. Chem, vol.286, pp.28080-28088, 2011.

T. Hara, K. Nakamura, M. Matsui, A. Yamamoto, Y. Nakahara et al., Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice, Nature, vol.441, pp.885-889, 2006.

M. Komatsu, S. Waguri, T. Chiba, S. Murata, J. Iwata et al., Loss of autophagy in the central nervous system causes neurodegeneration in mice, Nature, vol.441, pp.880-884, 2006.

M. Komatsu, Q. J. Wang, G. R. Holstein, V. L. Friedrich, . Jr et al., Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration, Proc. Natl. Acad. Sci, vol.104, pp.14489-14494, 2007.

S. M. Ferguson, Neuronal lysosomes, Neurosci. Lett, vol.697, pp.1-9, 2019.

S. Jäger, C. Bucci, I. Tanida, T. Ueno, E. Kominami et al., Role for Rab7 in maturation of late autophagic vacuoles, J. Cell. Sci, vol.117, pp.4837-4848, 2004.

M. Bourdenx, J. Daniel, E. Genin, F. N. Soria, M. Blanchard-desce et al., Nanoparticles restore lysosomal acidification defects: Implications for Parkinson and other lysosomal-related diseases, Autophagy, vol.12, pp.472-483, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-02439394

L. R. Kett, B. Stiller, M. M. Bernath, I. Tasset, J. Blesa et al., alpha-Synuclein-independent histopathological and motor deficits in mice lacking the endolysosomal Parkinsonism protein Atp13a2, J. Neurosci, vol.35, pp.5724-5742, 2015.

A. G. Henry, S. Aghamohammadzadeh, H. Samaroo, Y. Chen, K. Mou et al., Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression, Hum. Mol. Genet, vol.24, pp.6013-6028, 2015.

Y. Tong, H. Yamaguchi, E. Giaime, S. Boyle, R. Kopan et al., Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice, Proc. Natl. Acad. Sci, vol.107, pp.9879-9884, 2010.

E. Giaime, Y. Tong, L. K. Wagner, Y. Yuan, G. Huang et al., Age-Dependent Dopaminergic Neurodegeneration and Impairment of the Autophagy-Lysosomal Pathway in LRRK-Deficient Mice, vol.96, pp.796-807, 2017.

L. Qiao, S. Hamamichi, K. A. Caldwell, G. A. Caldwell, T. A. Yacoubian et al., Lysosomal enzyme cathepsin D protects against alpha-synuclein aggregation and toxicity, Mol. Brain, vol.1, p.17, 2008.

S. P. Sardi, J. Clarke, C. Kinnecom, T. J. Tamsett, L. Li et al., CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy, Proc. Natl. Acad. Sci, vol.108, pp.12101-12106, 2011.

M. R. Lewis and W. H. Lewis, Mitochondria in tissue culture, Science, vol.39, pp.330-333, 1914.

J. C. Greene, A. J. Whitworth, I. Kuo, L. A. Andrews, M. B. Feany et al., Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants, Proc. Natl. Acad. Sci, vol.100, pp.4078-4083, 2003.

J. Park, S. B. Lee, S. Lee, Y. Kim, S. Song et al., Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin, Nature, vol.441, pp.1157-1161, 2006.

A. C. Poole, R. E. Thomas, L. A. Andrews, H. M. Mcbride, A. J. Whitworth et al., The PINK1/Parkin pathway regulates mitochondrial morphology, Proc. Natl. Acad. Sci, vol.105, pp.1638-1643, 2008.

J. Brooks, J. Ding, J. Simon-sanchez, C. Paisan-ruiz, A. B. Singleton et al., Parkin and PINK1 mutations in early-onset Parkinson's disease: Comprehensive screening in publicly available cases and control, J. Med. Genet, vol.46, pp.375-381, 2009.

R. J. Youle and D. P. Narendra, Mechanisms of mitophagy, Nat. Rev. Mol. Cell Biol, vol.12, pp.9-14, 2011.

D. A. Stevens, Y. Lee, H. C. Kang, B. D. Lee, Y. I. Lee et al., Parkin loss leads to PARIS-dependent declines in mitochondrial mass and respiration, Proc. Natl. Acad. Sci, vol.112, pp.11696-11701, 2015.

D. A. Sliter, J. Martinez, L. Hao, X. Chen, N. Sun et al., Parkin and PINK1 mitigate STING-induced inflammation, Nature, vol.561, pp.258-262, 2018.

O. Corti and . Mitophagy, Lessons from a Pathway Linked to Parkinson's Disease, Neurotox. Res, 2019.

C. Van-der-merwe, Z. Jalali-sefid-dashti, A. Christoffels, B. Loos, and S. Bardien, Evidence for a common biological pathway linking three Parkinson's disease-causing genes: Parkin, PINK1 and DJ-1, Eur. J. Neurosci, vol.41, pp.1113-1125, 2015.

L. Zondler, L. Miller-fleming, M. Repici, S. Goncalves, S. Tenreiro et al., DJ-1 interactions with alpha-synuclein attenuate aggregation and cellular toxicity in models of Parkinson's disease

K. J. Thomas, M. K. Mccoy, J. Blackinton, A. Beilina, M. Van-der-brug et al., DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy, Hum. Mol. Genet, vol.20, pp.40-50, 2011.

B. Wang, Z. Cai, K. Tao, W. Zeng, F. Lu et al., Essential control of mitochondrial morphology and function by chaperone-mediated autophagy through degradation of PARK7, Autophagy, vol.12, pp.1215-1228, 2016.

H. Li, A. Ham, T. C. Ma, S. H. Kuo, E. Kanter et al., Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations, Autophagy, vol.15, pp.113-130, 2019.

A. Zimprich, A. Benet-pages, W. Struhal, E. Graf, S. H. Eck et al., A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease, Am. J. Hum. Genet, vol.89, pp.168-175, 2011.

E. Zavodszky, M. N. Seaman, K. Moreau, M. Jimenez-sanchez, S. Y. Breusegem et al., Mutation in VPS35 associated with Parkinson's disease impairs WASH complex association and inhibits autophagy, Nat. Commun, vol.5, 2014.

E. T. Williams, L. Glauser, E. Tsika, H. Jiang, S. Islam et al., Parkin mediates the ubiquitination of VPS35 and modulates retromer-dependent endosomal sorting, Hum. Mol. Genet, vol.27, pp.3189-3205, 2018.

J. Huang, J. Yang, Y. Shen, H. Jiang, C. Han et al., HMGB1 Mediates Autophagy Dysfunction via Perturbing Beclin1-Vps34 Complex in Dopaminergic Cell Model, Front. Mol. Neurosci, vol.10, 2017.

P. Garcia-sanz, L. Orgaz, J. M. Fuentes, C. Vicario, and R. Moratalla, Cholesterol and multilamellar bodies: Lysosomal dysfunction in GBA-Parkinson disease, Autophagy, vol.14, pp.717-718, 2018.

M. J. Kim, S. Jeon, L. F. Burbulla, and D. Krainc, Acid ceramidase inhibition ameliorates alpha-synuclein accumulation upon loss of GBA1 function, Hum. Mol. Genet, vol.27, 1972.

J. H. Park and E. H. Schuchman, Acid ceramidase and human disease, Biochim. Biophys. Acta, vol.1758, pp.2133-2138, 2006.

P. P. Lie and R. A. Nixon, Lysosome trafficking and signaling in health and neurodegenerative diseases, Neurobiol. Dis, vol.122, pp.94-105, 2019.

T. Pan, P. Rawal, Y. Wu, W. Xie, J. Jankovic et al., Rapamycin protects against rotenone-induced apoptosis through autophagy induction, Neuroscience, vol.164, pp.541-551, 2009.

X. Bai, M. C. Wey, E. Fernandez, M. J. Hart, J. Gelfond et al., Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy, Pathobiol. Aging Age Relat. Dis, vol.5, 2015.

C. Malagelada, Z. H. Jin, V. Jackson-lewis, S. Przedborski, and L. A. Greene, Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease, J. Neurosci, vol.30, pp.1166-1175, 2010.

G. Napolitano and A. Ballabio, TFEB at a glance, J. Cell Sci, vol.129, pp.2475-2481, 2016.

K. Kilpatrick, Y. Zeng, T. Hancock, and L. Segatori, Genetic and chemical activation of TFEB mediates clearance of aggregated alpha-synuclein, PLoS ONE, vol.10, 2015.

M. Decressac, B. Mattsson, P. Weikop, M. Lundblad, J. Jakobsson et al., TFEB-mediated autophagy rescues midbrain dopamine neurons from alpha-synuclein toxicity, Proc. Natl. Acad. Sci, vol.110, pp.1817-1826, 2013.

S. Tan, C. Y. Yu, Z. W. Sim, Z. S. Low, B. Lee et al., Pomegranate activates TFEB to promote autophagy-lysosomal fitness and mitophagy, Sci. Rep, vol.9, 2019.

C. Kim, E. Rockenstein, B. Spencer, H. K. Kim, A. Adame et al., Antagonizing Neuronal Toll-like Receptor 2 Prevents Synucleinopathy by Activating Autophagy, Cell Rep, vol.13, pp.771-782, 2015.

C. Kim, D. H. Ho, J. E. Suk, S. You, S. Michael et al., Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia, Nat. Commun, 1562.

J. A. Rodríguez-navarro, L. Rodríguez, M. J. Casarejos, R. M. Solano, A. Gómez et al., Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation, Neurobiol. Dis, vol.39, pp.423-438, 2010.

S. Sarkar, J. E. Davies, Z. Huang, A. Tunnacliffe, and D. C. Rubinsztein, Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein, J. Biol. Chem, vol.282, pp.5641-5652, 2007.

Y. Luan, X. Ren, W. Zheng, Z. Zeng, Y. Guo et al., Chronic Caffeine Treatment Protects Against alpha-Synucleinopathy by Reestablishing Autophagy Activity in the Mouse Striatum, Front. Neurosci, vol.12, 2018.

L. Hou, N. Xiong, L. Liu, J. Huang, C. Han et al., Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement, BMC Neurosci, vol.16, 2015.

X. Z. Li, X. P. Chen, K. Zhao, L. M. Bai, H. Zhang et al., Therapeutic effects of valproate combined with lithium carbonate on MPTP-induced parkinsonism in mice: Possible mediation through enhanced autophagy, Int. J. Neurosci, vol.123, pp.73-79, 2013.

A. Williams, S. Sarkar, P. Cuddon, E. K. Ttofi, S. Saiki et al., Novel targets for Huntington's disease in an mTOR-independent autophagy pathway, Nat. Chem. Biol, vol.4, pp.295-305, 2008.

F. Pagan, M. Hebron, E. H. Valadez, Y. Torres-yaghi, X. Huang et al., Nilotinib Effects in Parkinson's disease and Dementia with Lewy bodies, J. Parkinsons Dis, vol.6, pp.503-517, 2016.

F. L. Pagan, M. L. Hebron, B. Wilmarth, Y. Torres-yaghi, A. Lawler et al., Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson's disease, Pharm. Res

J. Lee, M. K. Mcbrayer, D. M. Wolfe, L. J. Haslett, A. Kumar et al., Presenilin 1 Maintains Lysosomal Ca(2+) Homeostasis via TRPML1 by Regulating vATPase-Mediated Lysosome Acidification, Cell Rep, vol.12, pp.1430-1444, 2015.

G. Prévot, F. N. Soria, M. Thiolat, J. Daniel, J. B. Verlhac et al., Harnessing Lysosomal pH through PLGA Nanoemulsion as a Treatment of Lysosomal-Related Neurodegenerative Diseases, Bioconjugate Chem, vol.29, pp.4083-4089, 2018.

J. Koh, H. N. Kim, J. J. Hwang, Y. Kim, and S. E. Park, Lysosomal dysfunction in proteinopathic neurodegenerative disorders: Possible therapeutic roles of cAMP and zinc, Mol. Brain, vol.12, 2019.

G. Ambrosi, C. Ghezzi, R. Zangaglia, G. Levandis, C. Pacchetti et al., Ambroxol-induced rescue of defective glucocerebrosidase is associated with increased LIMP-2 and saposin C levels in GBA1 mutant Parkinson's disease cells, Neurobiol. Dis, vol.82, pp.235-242, 2015.

A. Mcneill, J. Magalhaes, C. Shen, K. Y. Chau, D. Hughes et al., Ambroxol improves lysosomal biochemistry in glucocerebrosidase mutation-linked Parkinson disease cells, Brain, vol.137, pp.1481-1495, 2014.

C. R. Silveira, J. Mackinley, K. Coleman, Z. Li, E. Finger et al., Ambroxol as a novel disease-modifying treatment for Parkinson's disease dementia: Protocol for a single-centre, randomized, double-blind, placebo-controlled trial, BMC Neurol, 1920.

J. H. Lu, J. Q. Tan, S. S. Durairajan, L. F. Liu, Z. H. Zhang et al., Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy, Autophagy, vol.8, pp.98-108, 2012.

K. Wang, J. Huang, W. Xie, L. Huang, C. Zhong et al., Beclin1 and HMGB1 ameliorate the alphasynuclein-mediated autophagy inhibition in PC12 cells, Diagn. Pathol, vol.11, 2016.

M. Xilouri, O. R. Brekk, N. Landeck, P. M. Pitychoutis, T. Papasilekas et al., Boosting chaperone-mediated autophagy in vivo mitigates alpha-synuclein-induced neurodegeneration, Brain, vol.136, pp.2130-2146, 2013.

J. Anguiano, T. P. Garner, M. Mahalingam, B. C. Das, E. Gavathiotis et al., Chemical modulation of chaperone-mediated autophagy by retinoic acid derivatives, Nat. Chem. Biol, vol.9, pp.374-382, 2013.

S. J. Mullett, R. Di-maio, J. T. Greenamyre, and D. A. Hinkle, DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress, J. Mol. Neurosci, vol.49, pp.507-511, 2013.

S. J. Mullett and D. A. Hinkle, DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone, Neurobiol. Dis, vol.33, pp.28-36, 2009.

S. J. Mullett and D. A. Hinkle, DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity, J. Neurochem, vol.117, pp.375-387, 2011.

B. R. De-miranda, E. M. Rocha, Q. Bai, A. El-ayadi, D. Hinkle et al., Astrocyte-specific DJ-1 overexpression protects against rotenone-induced neurotoxicity in a rat model of Parkinson's disease, Neurobiol. Dis, vol.115, pp.101-114, 2018.

A. B. Pupyshev, M. A. Tikhonova, A. A. Akopyan, M. V. Tenditnik, N. I. Dubrovina et al., Therapeutic activation of autophagy by combined treatment with rapamycin and trehalose in a mouse MPTP-induced model of Parkinson's disease, Pharm. Biochem. Behav, vol.177, pp.1-11, 2019.