B. Dehay, M. Bourdenx, P. Gorry, S. Przedborski, M. Vila et al., Targeting alpha-synuclein for treatment of Parkinson's disease: mechanistic and therapeutic considerations, Lancet Neurol, 2015.

M. P. Mattson and T. Magnus, Ageing and neuronal vulnerability, Nat Rev Neurol, vol.7, issue.4, pp.278-294, 2006.

T. J. Collier, N. M. Kanaan, and J. H. Kordower, Ageing as a primary risk factor for Parkinson's disease: evidence from studies of non-human primates, Nat Rev Neurol, vol.12, issue.6, pp.359-366, 2011.

D. Sulzer, Multiple hit hypotheses for dopamine neuron loss in Parkinson's disease, Trends Neurosci, vol.30, issue.5, pp.244-250, 2007.

M. G. Spillantini, M. L. Schmidt, V. M. Lee, J. Q. Trojanowski, R. Jakes et al., Alpha-synuclein in Lewy bodies, Nature, vol.388, issue.6645, pp.839-840, 1997.

M. H. Polymeropoulos, C. Lavedan, E. Leroy, S. E. Ide, A. Dehejia et al., Mutation in the alphasynuclein gene identified in families with Parkinson's disease, Science, vol.276, issue.5321, pp.2045-2047, 1997.

I. Magen and M. F. Chesselet, Genetic mouse models of Parkinson's disease The state of the art, Prog Brain Res, vol.184, issue.10, p.84004, 2010.

E. Bezard, Z. Yue, D. Kirik, and M. G. Spillantini, Animal models of Parkinson's disease: limits and relevance to neuroprotection studies, Mov Disord: Off J Mov Dis Soc, vol.28, issue.1, pp.61-70, 2013.

M. Oliveras-salva, A. Van-der-perren, N. Casadei, S. Stroobants, S. Nuber et al., vector-mediated overexpression of alpha-synuclein in mouse substantia nigra induces protein aggregation and progressive dose-dependent neurodegeneration, Mol Neurodegener, vol.8, p.44, 2013.

A. Van-der-perren, J. Toelen, C. Casteels, F. Macchi, A. S. Van-rompuy et al., Longitudinal follow-up and characterization of a robust rat model for Parkinson's disease based on overexpression of alpha-synuclein with adeno-associated viral vectors, Neurobiol Aging, vol.36, issue.3, pp.1543-1558, 2015.

S. Zolotukhin, B. J. Byrne, E. Mason, I. Zolotukhin, M. Potter et al., Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield, Gene Ther, vol.6, issue.6, pp.973-985, 1999.

C. Aurnhammer, M. Haase, N. Muether, M. Hausl, C. Rauschhuber et al., Universal real-time PCR for the detection and quantification of adenoassociated virus serotype 2-derived inverted terminal repeat sequences, Hum Gene Ther Methods, vol.23, issue.1, pp.18-28, 2012.

M. Engeln, S. Fasano, S. H. Ahmed, M. Cador, V. Baekelandt et al., Levodopa gains psychostimulant-like properties after nigral dopaminergic loss, Ann Neurol, vol.74, issue.1, pp.140-144, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01153692

N. Dominici, U. Keller, H. Vallery, L. Friedli, R. Van-den-brand et al., Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders, Nat Med, vol.18, issue.7, pp.1142-1147, 2012.

M. Engeln, S. H. Ahmed, C. Vouillac, F. Tison, E. Bezard et al., Reinforcing properties of Pramipexole in normal and parkinsonian rats, Neurobiol Dis, vol.49, pp.79-86, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01153677

M. Engeln, M. F. Bastide, E. Toulme, B. Dehay, M. Bourdenx et al., Selective Inactivation of Striatal FosB/DeltaFosB-Expressing Neurons Alleviates L-Dopa-Induced Dyskinesia, Biol Psychiatry, 2014.

R. Van-den-brand, J. Heutschi, Q. Barraud, J. Digiovanna, K. Bartholdi et al., Restoring voluntary control of locomotion after paralyzing spinal cord injury, Science, vol.336, issue.6085, pp.1182-1185, 2012.

C. Vitrac, S. Peron, I. Frappe, P. O. Fernagut, M. Jaber et al., Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors, Frontiers Neural Circuits, vol.8, p.13, 2014.

M. Decressac, B. Mattsson, M. Lundblad, P. Weikop, and A. Bjorklund, Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons, Neurobiol Dis, vol.45, issue.3, pp.939-953, 2012.

D. Kirik, C. Rosenblad, C. Burger, C. Lundberg, T. E. Johansen et al., Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system, J Neurosci, vol.22, issue.7, pp.2780-2791, 2002.

H. Fujiwara, M. Hasegawa, N. Dohmae, A. Kawashima, E. Masliah et al., ) alpha-Synuclein is phosphorylated in synucleinopathy lesions, Nat Cell Biol, vol.4, issue.2, pp.160-164, 2002.

K. Hamre, R. Tharp, K. Poon, X. Xiong, and R. J. Smeyne, Differential strain susceptibility following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration acts in an autosomal dominant fashion: quantitative analysis in seven strains of Mus musculus, Brain Res, vol.828, issue.1-2, pp.91-103, 1999.

A. Takeoka, I. Vollenweider, G. Courtine, and S. Arber, Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury, Cell, vol.159, issue.7, pp.1626-1639, 2014.

T. Takeda, M. Hosokawa, K. Higuchi, M. Hosono, I. Akiguchi et al., A novel murine model of aging, Senescence-Accelerated Mouse (SAM), Arch Gerontol Geriatr, vol.19, issue.2, pp.185-192, 1994.

J. Przedborski, S. Dehay, B. Bourdenx, M. Gorry, P. Przedborski et al., Targeting ?-synuclein for treating Parkinson's disease: mechanistic and therapeutic considerations, Lancet Neurology, vol.2, issue.1, pp.141-151, 2007.

K. Larsen, C. Hedegaard, M. F. Bertelsen, and C. Bendixen, Threonine 53 in alpha-synuclein is conserved in long-living non-primate animals, Biochem Biophys Res Commun, vol.387, issue.3, pp.602-605, 2009.

B. A. Hamilton, alpha-Synuclein A53T substitution associated with Parkinson disease also marks the divergence of Old World and New World primates, Genomics, vol.83, issue.4, pp.739-742, 2004.

E. Bezard, S. Dovero, C. Prunier, P. Ravenscroft, S. Chalon et al., Relationship between the appearance of symptoms and the level of nigrostriatal degeneration in a progressive 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned macaque model of Parkinson's disease, J Neurosci, vol.21, issue.17, pp.6853-6861, 2001.

E. Bezard and C. E. Gross, Compensatory mechanisms in experimental and human parkinsonism: towards a dynamic approach, Prog Neurobiol, vol.55, issue.2, pp.93-116, 1998.

A. Eslamboli, M. Romero-ramos, C. Burger, T. Bjorklund, N. Muzyczka et al., Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain, Brain :J Neuro, vol.130, pp.799-815, 2007.

C. Lo-bianco, J. L. Ridet, B. L. Schneider, N. Deglon, and P. Aebischer, ) alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson's disease, Proc Natl Acad Sci U S A, vol.99, issue.16, pp.10813-10818, 2002.

K. E. Paleologou, A. W. Schmid, C. C. Rospigliosi, H. Y. Kim, G. R. Lamberto et al., Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein, J Biol Chem, vol.283, issue.24, pp.16895-16905, 2008.

K. Buck, N. Landeck, A. Ulusoy, N. K. Majbour, O. M. El-agnaf et al., Ser129 phosphorylation of endogenous alpha-synuclein induced by overexpression of polo-like kinases 2 and 3 in nigral dopamine neurons is not detrimental to their survival and function, Neurobiol Dis, vol.78, pp.100-114, 2015.

G. Muntane, I. Ferrer, and M. Martinez-vicente, ) alpha-synuclein phosphorylation and truncation are normal events in the adult human brain, Neuroscience, vol.200, pp.106-119, 2012.

I. Irwin, K. T. Finnegan, L. E. Delanney, D. Monte, D. Langston et al., The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: a critical reassessment, Brain Res, vol.572, issue.1-2, pp.224-231, 1992.

S. Rose, M. Nomoto, E. A. Jackson, W. R. Gibb, P. Jaehnig et al., Age-related effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment of common marmosets, Eur J Pharmacol, vol.230, issue.2, pp.177-185, 1993.

A. Ovadia, Z. Zhang, and D. M. Gash, Increased susceptibility to MPTP toxicity in middle-aged rhesus monkeys, Neurobiol Aging, vol.16, issue.6, pp.931-937, 1995.

I. Paris, J. Lozano, C. Perez-pastene, P. Munoz, and J. Segura-aguilar, Molecular and neurochemical mechanisms in PD pathogenesis, Neurotox Res, vol.16, issue.3, pp.271-279, 2009.

E. Hirsch, A. M. Graybiel, and Y. A. Agid, Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease, Nature, vol.334, issue.6180, pp.345-348, 1988.

M. T. Herrero, E. C. Hirsch, A. Kastner, M. Ruberg, M. R. Luquin et al., Does neuromelanin contribute to the vulnerability of catecholaminergic neurons in monkeys intoxicated with MPTP?, Neuroscience, vol.56, issue.2, pp.499-511, 1993.

P. M. Carvey, A. Punati, and M. B. Newman, Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis, Cell Transplant, vol.15, issue.3, pp.239-250, 2006.