, Paris Cardiovascular Research Center (PARCC

. Inserm-umr970,

, Université Paris Descartes

, INSERM U1016

, University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute

, 3P5 proteomics facility

K. A. Tolba and E. N. Deliargyris, Cardiotoxicity of cancer therapy, Cancer Invest, vol.17, issue.6, pp.408-430, 1999.

J. Monsuez, J. Charniot, N. Vignat, and J. Artigou, Cardiac side-effects of cancer chemotherapy, Int J Cardiol, vol.144, issue.1, pp.3-15, 2010.

J. Herrmann, E. H. Yang, C. A. Iliescu, M. Cilingiroglu, K. Charitakis et al., Vascular Toxicities of Cancer Therapies: The Old and the New--An Evolving Avenue, Circulation, vol.133, issue.13, pp.1272-89, 2016.

S. Gottlieb, Cancer drug may cause heart failure, BMJ, vol.321, issue.7256, p.259, 2000.

N. G. Kounis, I. Koniari, and G. Hahalis, Cardio-oncology, Immuno-oncology, Onco-cardiology and Onco-immunology, Int J Cardiol, vol.223, pp.254-261, 2016.

H. Verheul and H. M. Pinedo, Possible molecular mechanisms involved in the toxicity of angiogenesis inhibition, Nat Rev Cancer, vol.7, issue.6, pp.475-85, 2007.

R. Kerbel and J. Folkman, Clinical translation of angiogenesis inhibitors, Nat Rev Cancer, vol.2, issue.10, pp.727-766, 2002.

T. F. Chu, M. A. Rupnick, R. Kerkela, S. M. Dallabrida, D. Zurakowski et al., Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib, Lancet Lond Engl, vol.370, issue.9604, pp.2011-2020, 2007.

M. H. Kappers, J. Van-esch, S. Sleijfer, A. Danser, and A. H. Van-den-meiracker, Cardiovascular and renal toxicity during angiogenesis inhibition: clinical and mechanistic aspects, J Hypertens, vol.27, issue.12, pp.2297-309, 2009.

M. Kappers, J. Van-esch, F. Smedts, R. R. De-krijger, K. Eechoute et al., Sunitinib-induced hypothyroidism is due to induction of type 3 deiodinase activity and thyroidal capillary regression, J Clin Endocrinol Metab, vol.96, issue.10, pp.3087-94, 2011.

T. Kamba and D. M. Mcdonald, Mechanisms of adverse effects of anti-VEGF therapy for cancer, Br J Cancer, vol.96, issue.12, pp.1788-95, 2007.

A. Chrisoulidou, S. Mandanas, E. Margaritidou, L. Mathiopoulou, M. Boudina et al., Treatment compliance and severe adverse events limit the use of tyrosine kinase inhibitors in refractory thyroid cancer. OncoTargets Ther, vol.8, pp.2435-2477, 2015.

J. T. Hartmann and L. Kanz, Sunitinib and periodic hair depigmentation due to temporary c-KIT inhibition, Arch Dermatol, vol.144, issue.11, pp.1525-1531, 2008.

R. J. Motzer, T. E. Hutson, P. Tomczak, M. D. Michaelson, R. M. Bukowski et al., Sunitinib versus interferon alfa in metastatic renal-cell carcinoma, N Engl J Med, vol.356, issue.2, pp.115-139, 2007.

G. D. Demetri, A. T. Van-oosterom, C. R. Garrett, M. E. Blackstein, M. H. Shah et al., Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial, Lancet Lond Engl, vol.368, issue.9544, pp.1329-1367, 2006.

E. Raymond, L. Dahan, J. Raoul, Y. Bang, I. Borbath et al., Sunitinib malate for the treatment of pancreatic neuroendocrine tumors, N Engl J Med, vol.364, issue.6, pp.501-514, 2011.

S. Lankhorst, M. Kappers, J. Van-esch, A. Danser, and A. H. Van-den-meiracker, Mechanism of hypertension and proteinuria during angiogenesis inhibition: evolving role of endothelin-1, J Hypertens, vol.31, issue.3, pp.444-454, 2013.

. Meiracker-ah-van-den, A. Danser, S. Sleijfer, and M. Kappers, Re: Hypertension as a Biomarker of Efficacy in Patients With Metastatic Renal Cell Carcinoma Treated With Sunitinib, J Natl Cancer Inst, 2011.

V. Chintalgattu, M. L. Rees, J. C. Culver, A. Goel, T. Jiffar et al., Coronary microvascular pericytes are the cellular target of sunitinib malate-induced cardiotoxicity, Sci Transl Med, vol.5, issue.187, pp.187-69, 2013.

J. Moslehi, Y. A. Minamishima, J. Shi, D. Neuberg, D. M. Charytan et al., Loss of hypoxia-inducible factor prolyl hydroxylase activity in cardiomyocytes phenocopies ischemic cardiomyopathy. Circulation, vol.122, pp.1004-1020, 2010.

M. Kappers, J. Esch, . Van, W. Sluiter, S. Sleijfer et al., Hypertension Induced by the Tyrosine Kinase Inhibitor Sunitinib Is Associated With Increased Circulating Endothelin-1 Levels, Hypertension, vol.56, issue.4, pp.675-81, 2010.

Y. Yang and P. Bu, Progress on the cardiotoxicity of sunitinib: Prognostic significance, mechanism and protective therapies, Chem Biol Interact, 2016.

N. Dhaun and D. J. Webb, Receptor tyrosine kinase inhibition, hypertension, and proteinuria: is endothelin the smoking gun? Hypertens Dallas Tex 1979, vol.56, pp.575-582, 2010.

S. Lankhorst, M. Kappers, J. Van-esch, F. Smedts, S. Sleijfer et al., Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study. Hypertens Dallas Tex 1979, vol.64, pp.1282-1291, 2014.

N. Dhaun, I. M. Macintyre, D. Kerr, V. Melville, N. R. Johnston et al., Selective endothelin-A receptor antagonism reduces proteinuria, blood pressure, and arterial stiffness in chronic proteinuric kidney disease

. Hypertens-dallas-tex, , vol.57, pp.772-781, 1979.

S. Kongbundansuk and W. G. Hundley, Noninvasive imaging of cardiovascular injury related to the treatment of cancer, JACC Cardiovasc Imaging, 2014.

F. Pizzino, G. Vizzari, R. Qamar, C. Bomzer, S. Carerj et al., Multimodality Imaging in Cardiooncology, J Oncol, p.263950, 2015.

C. D'amore, P. Gargiulo, S. Paolillo, A. M. Pellegrino, T. Formisano et al., Nuclear imaging in detection and monitoring of cardiotoxicity, World J Radiol, vol.6, issue.7, pp.486-92, 2014.

C. Borde, P. Kand, and S. Basu, Enhanced myocardial fluorodeoxyglucose uptake following Adriamycin-based therapy: Evidence of early chemotherapeutic cardiotoxicity?, World J Radiol, vol.4, issue.5, pp.220-223, 2012.

A. C. O'farrell, R. Evans, J. Silvola, I. S. Miller, E. Conroy et al., A Novel Positron Emission Tomography (PET) Approach to Monitor Cardiac Metabolic Pathway Remodeling in Response to Sunitinib Malate, PloS One, vol.12, issue.1, p.169964, 2017.

S. C. Kolwicz and R. Tian, Glucose metabolism and cardiac hypertrophy, Cardiovasc Res, vol.90, issue.2, pp.194-201, 2011.

M. L. Rees, J. Subramaniam, Y. Li, D. J. Hamilton, O. H. Frazier et al., A PKM2 signature in the failing heart, Biochem Biophys Res Commun, vol.459, issue.3, pp.430-436, 2015.

S. Hafizi, J. Wharton, A. H. Chester, and M. H. Yacoub, Profibrotic effects of endothelin-1 via the ETA receptor in cultured human cardiac fibroblasts, Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol, vol.14, issue.4-6, pp.285-92, 2004.

H. Ehmke, J. Faulhaber, K. Münter, M. Kirchengast, and R. J. Wiesner, Chronic ETA receptor blockade attenuates cardiac hypertrophy independently of blood pressure effects in renovascular hypertensive rats. Hypertens Dallas Tex 1979, vol.33, pp.954-60, 1999.

D. Nilsson, A. Wackenfors, L. Gustafsson, L. Edvinsson, P. Paulsson et al., Increased ETA and ETB receptor contraction in the left internal mammary artery from patients with hypertension, J Hum Hypertens, vol.22, issue.3, pp.226-235, 2007.

L. Hue, C. Beauloye, A. Marsin, L. Bertrand, S. Horman et al., Insulin and Ischemia Stimulate Glycolysis by Acting on the Same Targets Through Different and Opposing Signaling Pathways, J Mol Cell Cardiol, vol.34, issue.9, pp.1091-1098, 2002.

M. C. Kreissl, D. B. Stout, K. Wong, H. Wu, E. Caglayan et al., Influence of dietary state and insulin on myocardial, skeletal muscle and brain [ 18 F]-fluorodeoxyglucose kinetics in mice, EJNMMI Res, vol.1, issue.1, p.8, 2011.

G. D. Vitale, R. A. Dekemp, T. D. Ruddy, K. Williams, and R. S. Beanlands, Myocardial glucose utilization and optimization of (18)F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction, J Nucl Med Off Publ Soc Nucl Med, 2001.

V. Dilsizian and . 18f-fdg, Uptake as a Surrogate Marker for Antecedent Ischemia, J Nucl Med, vol.49, issue.12, pp.1909-1920, 2008.

F. Haas, L. Jennen, U. Heinzmann, A. N. Wottke, M. Schwaiger et al., Ischemically compromised myocardium displays different time-courses of functional recovery: Correlation with morphological alterations? ResearchGate, vol.20, pp.290-298, 2001.

A. Schinkel, D. Poldermans, A. Elhendy, and J. J. Bax, Assessment of Myocardial Viability in Patients with Heart Failure, J Nucl Med, vol.48, issue.7, pp.1135-1181, 2007.

S. H. Rahimtoola, V. Dilsizian, C. M. Kramer, T. H. Marwick, and J. Vanoverschelde, Chronic Ischemic Left Ventricular Dysfunction, JACC Cardiovasc Imaging, vol.1, issue.4, pp.536-55, 2008.

H. M. Piper, Pathophysiology of Severe Ischemic Myocardial Injury, p.448, 1990.

R. Kumar, M. J. Arlt, A. Kuzmanov, W. Born, and B. Fuchs, Sunitinib malate (SU-11248) reduces tumour burden and lung metastasis in an intratibial human xenograft osteosarcoma mouse model, Am J Cancer Res, vol.5, issue.7, pp.2156-68, 2015.

G. W. Goodwin, C. S. Taylor, and H. Taegtmeyer, Regulation of energy metabolism of the heart during acute increase in heart work, J Biol Chem, vol.273, issue.45, pp.29530-29539, 1998.

M. Zhong, C. E. Alonso, H. Taegtmeyer, and B. K. Kundu, Quantitative PET imaging detects early metabolic remodeling in a mouse model of pressure-overload left ventricular hypertrophy in vivo, J Nucl Med Off Publ Soc Nucl Med, 2013.

R. J. Gropler and L. R. Peterson, Imaging of Myocardial Metabolism. ResearchGate, pp.641-56, 2010.

M. Toubert, L. Vercellino, I. Faugeron, D. Lussato, E. Hindie et al., Fatal heart failure after a 26-month combination of tyrosine kinase inhibitors in a papillary thyroid cancer, Thyroid Off J Am Thyroid Assoc, 2011.

K. Kobayashi and J. R. Neely, Effects of ischemia and reperfusion on pyruvate dehydrogenase activity in isolated rat hearts, J Mol Cell Cardiol, vol.15, issue.6, pp.359-67, 1983.

L. M. Voipio-pulkki, P. Nuutila, M. J. Knuuti, U. Ruotsalainen, M. Haaparanta et al., Heart and skeletal muscle glucose disposal in type 2 diabetic patients as determined by positron emission tomography, 1994.

W. C. Stanley, J. L. Hall, T. A. Hacker, L. A. Hernandez, and L. F. Whitesell, Decreased myocardial glucose uptake during ischemia in diabetic swine, Metabolism, vol.46, issue.2, pp.168-72, 1997.

R. Malek and S. N. Davis, Tyrosine kinase inhibitors under investigation for the treatment of type II diabetes, Expert Opin Investig Drugs, vol.25, issue.3, pp.287-96, 2016.

T. Horinouchi, A. Hoshi, T. Harada, T. Higa, S. Karki et al., Endothelin-1 suppresses insulin-stimulated Akt phosphorylation and glucose uptake via GPCR kinase 2 in skeletal muscle cells, Br J Pharmacol, vol.173, issue.6, pp.1018-1050, 2016.

A. Shemyakin, F. Salehzadeh, F. Böhm, L. Al-khalili, A. Gonon et al., Regulation of Glucose Uptake by Endothelin-1 in Human Skeletal Muscle in Vivo and in Vitro, J Clin Endocrinol Metab, vol.95, issue.5, pp.2359-66, 2010.

A. Shemyakin, F. Salehzadeh, D. E. Duque-guimaraes, F. Böhm, E. Rullman et al., Endothelin-1 Reduces Glucose Uptake in Human Skeletal Muscle In Vivo and In Vitro, Diabetes, vol.60, issue.8, pp.2061-2068, 2011.

D. Nagata and Y. Hirata, The role of AMP-activated protein kinase in the cardiovascular system, Hypertens Res, vol.33, issue.1, pp.22-30, 2009.

C. H. Orchard, The role of the sarcoplasmic reticulum in the response of ferret and rat heart muscle to acidosis, J Physiol, vol.384, pp.431-480, 1987.

C. Kassiotis, M. Rajabi, and H. Taegtmeyer, Metabolic Reserve of the Heart: The Forgotten Link Between Contraction and Coronary Flow, Prog Cardiovasc Dis, vol.51, issue.1, pp.74-88, 2008.

H. Kusuoka and E. Marban, Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium?, J Clin Invest, vol.93, issue.3, pp.1216-1239, 1994.

B. S. Burlew and K. T. Weber, Cardiac fibrosis as a cause of diastolic dysfunction, Herz, vol.27, issue.2, pp.92-100, 2002.

L. Mandinov, F. R. Eberli, C. Seiler, and O. M. Hess, Diastolic heart failure, Cardiovasc Res, vol.45, issue.4, pp.813-838, 2000.

M. Clozel and H. Salloukh, Role of endothelin in fibrosis and anti-fibrotic potential of bosentan, Ann Med, vol.37, issue.1, pp.2-12, 2005.

M. Chien, L. Lee, M. Hsiao, L. Wei, C. Chen et al., Inhibition of Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting VEGFRs and FGFRs; Evid-Based Complement Altern Med ECAM, 2013.

D. B. Mendel, A. D. Laird, X. Xin, S. G. Louie, J. G. Christensen et al., In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship, Clin Cancer Res Off J Am Assoc Cancer Res, vol.9, issue.1, pp.327-364, 2003.

J. T. Thackeray, J. P. Bankstahl, and F. M. Bengel, Impact of Image-Derived Input Function and Fit Time Intervals on Patlak Quantification of Myocardial Glucose Uptake in Mice, J Nucl Med Off Publ Soc Nucl Med, 2015.

J. R. Wi?niewski, A. Zougman, N. Nagaraj, and M. Mann, Universal sample preparation method for proteome analysis, Nat Methods, vol.6, issue.5, pp.359-62, 2009.

J. Rappsilber, M. Mann, and Y. Ishihama, Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips, Nat Protoc, vol.2, issue.8, pp.1896-906, 2007.

N. A. Kulak, G. Pichler, I. Paron, N. Nagaraj, and M. Mann, Minimal, encapsulated proteomicsample processing applied to copy-number estimation in eukaryotic cells, Nat Methods, vol.11, issue.3, pp.319-343, 2014.

J. R. Wi?niewski, K. Du?, and M. Mann, Proteomic workflow for analysis of archival formalin-fixed and paraffin-embedded clinical samples ot a depth o f0 0100 proteins, Proteomics Clin Appl, vol.7, issue.3-4, pp.225-258, 2013.

J. Cox, I. Matic, M. Hilger, N. Nagaraj, M. Selbach et al., A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics, Nat Protoc, vol.4, issue.5, pp.698-705, 2009.

J. R. Wi?niewski, M. Y. Hein, J. Cox, and M. Mann, A "proteomic ruler" for protein copy number and concentration estimation without spike-in standards, Mol Cell Proteomics MCP, vol.13, issue.12, pp.3497-506, 2014.

M. Prévilon, M. L. Gall, P. Chafey, C. Federeci, M. Pezet et al., Comparative differential proteomic profiles of nonfailing and failing hearts after in vivo thoracic aortic constriction in mice overexpressing FKBP12.6, Physiol Rep, 2013.

J. A. Vizcaíno, A. Csordas, N. Del-toro, J. A. Dianes, J. Griss et al., 2016 update of the PRIDE database and related tools, Nucleic Acids Res, vol.44, issue.D1, pp.447-456, 2016.