S. J. Shankland, B. Smeets, J. W. Pippin, and M. J. Moeller, The emergence of the glomerular parietal epithelial cell, Nat. Rev. Nephrol, vol.10, pp.158-173, 2014.

B. Smeets, Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells, J. Am. Soc. Nephrol, vol.20, pp.2604-2615, 2009.

C. Guettier, Immunohistochemical demonstration of parietal epithelial cells and macrophages in human proliferative extra-capillary lesions, Virchows Arch. A. Pathol. Anat. Histopathol, vol.409, pp.739-748, 1986.

M. E. Hemler, Tetraspanin proteins promote multiple cancer stages, Nat. Rev. Cancer, vol.14, pp.49-60, 2014.

S. Charrin, S. Jouannet, C. Boucheix, and E. Rubinstein, Tetraspanins at a glance, J. Cell. Sci, vol.127, pp.3641-3648, 2014.

P. H. Jones, L. A. Bishop, and F. M. Watt, Functional significance of CD9 association with beta 1 integrins in human epidermal keratinocytes, Cell. Adhes. Commun, vol.4, pp.297-305, 1996.

A. Ziyyat, CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion, J. Cell. Sci, vol.119, pp.416-424, 2006.

K. Nakamura, R. Iwamoto, and E. Mekada, Membrane-anchored heparinbinding EGF-like growth factor (HB-EGF) and diphtheria toxin receptorassociated protein (DRAP27)/CD9 form a complex with integrin alpha 3 beta 1 at cell-cell contact sites, J. Cell. Biol, vol.129, pp.1691-1705, 1995.

Y. Murayama, The tetraspanin CD9 modulates epidermal growth factor receptor signaling in cancer cells, J. Cell. Physiol, vol.216, pp.135-143, 2008.

A. Jeibmann, Involvement of CD9 and PDGFR in migration is evolutionarily conserved from Drosophila glia to human glioma, J. Neurooncol, vol.124, pp.373-383, 2015.

G. Bollee, Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis, Nat. Med, vol.17, pp.1242-1250, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02142778

J. Floege, F. Eitner, and C. E. Alpers, A new look at platelet-derived growth factor in renal disease, J. Am. Soc. Nephrol, vol.19, pp.12-23, 2008.

M. Iyoda, Long-and short-term treatment with imatinib attenuates the development of chronic kidney disease in experimental anti-glomerular basement membrane nephritis, Nephrol. Dial. Transplant, vol.28, pp.576-584, 2013.

T. Ostendorf, P. Boor, C. R. Van-roeyen, and J. Floege, Platelet-derived growth factors (PDGFs) in glomerular and tubulointerstitial fibrosis, Kidney Int Suppl, vol.4, pp.65-69, 2011.

C. R. Van-roeyen, T. Ostendorf, and J. Floege, The platelet-derived growth factor system in renal disease: an emerging role of endogenous inhibitors, Eur. J. Cell Biol, vol.91, pp.542-551, 2012.

B. Smeets, Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease, Am. J. Pathol, vol.184, pp.3239-3248, 2014.

C. Kuppe, Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis, Kidney Int, vol.88, pp.990-998, 2015.

J. Eymael, CD44 is required for the pathogenesis of experimental crescentic glomerulonephritis and collapsing focal segmental glomerulosclerosis, Kidney Int, vol.93, pp.626-642, 2018.

S. S. Roeder, Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age, Am. J. Physiol. Ren. Physiol, vol.309, pp.164-178, 2015.

J. Y. Perrot, C. Boucheix, M. Mirshahi, M. Kazatchkine, and J. Bariety, Monoclonal antibodies against surface antigens of lymphoblasts and blood cells or bone marrow recognize constituents of the human nephron

, Nephrologie, vol.5, pp.53-57, 1984.

I. D. Davis, T. W. Lebien, B. J. Lindman, and J. L. Platt, Biochemical and histochemical characterization of a murine tubular antigen, J. Am. Soc. Nephrol, vol.1, pp.1153-1161, 1991.

P. M. Sincock, G. Mayrhofer, and L. K. Ashman, Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and alpha5beta1 integrin, J. Histochem. Cytochem, vol.45, pp.515-525, 1997.

N. Kuroda, Expression of CD9/motility-related protein 1 (MRP-1) in renal parenchymal neoplasms: consistent expression in papillary and chromophobe renal cell carcinomas, Hum. Pathol, vol.32, pp.1071-1077, 2001.

Y. Nakamura, Immunohistochemical distribution of CD9, heparin binding epidermal growth factor-like growth factor, and integrin alpha3beta1 in normal human tissues, J. Histochem. Cytochem, vol.49, pp.439-444, 2001.

L. Naour, F. Rubinstein, E. Jasmin, C. Prenant, M. Boucheix et al., Severely reduced female fertility in CD9-deficient mice, Science, vol.287, pp.319-321, 2000.

C. Boucheix, Molecular cloning of the CD9 antigen. A new family of cell surface proteins, J. Biol. Chem, vol.266, pp.117-122, 1991.

R. Tiedt, T. Schomber, H. Hao-shen, and R. C. Skoda, Pf4-Cre transgenic mice allow the generation of lineage-restricted gene knockouts for studying megakaryocyte and platelet function in vivo, Blood, vol.109, pp.1503-1506, 2007.

N. H. Jones, M. J. Borowitz, and R. S. Metzgar, Characterization and distribution of a 24,000-molecular weight antigen defined by a monoclonal antibody (DU-ALL-1) elicited to common acute lymphoblastic leukemia (cALL) cells, Leuk. Res, vol.6, pp.449-464, 1982.

H. Kobayashi, The tetraspanin CD9 is preferentially expressed on the human CD4(+)CD45RA+ naive T cell population and is involved in T cell activation, Clin. Exp. Immunol, vol.137, pp.101-108, 2004.

J. Bariety, Podocyte involvement in human immune crescentic glomerulonephritis, Kidney Int, vol.68, pp.1109-1119, 2005.

M. J. Moeller, Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis, J. Am. Soc. Nephrol, vol.15, pp.61-67, 2004.

P. S. Thorner, M. Ho, V. Eremina, Y. Sado, and S. Quaggin, Podocytes contribute to the formation of glomerular crescents, J. Am. Soc. Nephrol, vol.19, pp.495-502, 2008.

M. J. Moeller, S. K. Sanden, A. Soofi, R. C. Wiggins, and L. B. Holzman, Podocyte-specific expression of cre recombinase in transgenic mice, Genesis, vol.35, pp.39-42, 2003.

D. Appel, Recruitment of podocytes from glomerular parietal epithelial cells, J. Am. Soc. Nephrol, vol.20, pp.333-343, 2009.

B. Smeets, Parietal epithelial cells participate in the formation of sclerotic lesions in focal segmental glomerulosclerosis, J. Am. Soc. Nephrol, vol.22, pp.1262-1274, 2011.

B. Smeets, The parietal epithelial cell: a key player in the pathogenesis of focal segmental glomerulosclerosis in Thy-1.1 transgenic mice, J. Am. Soc. Nephrol, vol.15, pp.928-939, 2004.

N. Kabgani, Primary cultures of glomerular parietal epithelial cells or podocytes with proven origin, PLoS One, vol.7, p.34907, 2012.

C. A. Buck and A. F. Horwitz, Integrin, a transmembrane glycoprotein complex mediating cell-substratum adhesion, J. Cell. Sci. Suppl, vol.8, pp.231-250, 1987.

C. Margadant, H. N. Monsuur, J. C. Norman, and A. Sonnenberg, Mechanisms of integrin activation and trafficking, Curr. Opin. Cell Biol, vol.23, pp.607-614, 2011.

M. Shafaq-zadah, Persistent cell migration and adhesion rely on retrograde transport of beta(1) integrin, Nat. Cell Biol, vol.18, pp.54-64, 2016.

E. Rubinstein, V. Poindessous-jazat, F. Le-naour, M. Billard, and C. Boucheix, CD9, but not other tetraspans, associates with the beta1 integrin precursor, Eur. J. Immunol, vol.27, pp.1919-1927, 1997.

O. Lenoir, Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis, Autophagy, vol.11, pp.1130-1145, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01539607

Y. Luque, Endothelial Epas1 Deficiency Is Sufficient To Promote Parietal Epithelial Cell Activation and FSGS in Experimental Hypertension, J. Am. Soc. Nephrol, vol.28, pp.3563-3578, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01713482

L. Ronnstrand, SHP-2 binds to Tyr763 and Tyr1009 in the PDGF betareceptor and mediates PDGF-induced activation of the Ras/MAP kinase pathway and chemotaxis, Oncogene, vol.18, pp.3696-3702, 1999.

H. Dijkman, B. Smeets, J. Van-der-laak, E. Steenbergen, and J. Wetzels, The parietal epithelial cell is crucially involved in human idiopathic focal segmental glomerulosclerosis, Kidney Int, vol.68, pp.1562-1572, 2005.

A. Blumenthal, Mechanical stress enhances CD9 expression in cultured podocytes, Am. J. Physiol. Ren. Physiol, vol.308, pp.602-613, 2015.

X. Jiang, J. Zhang, and Y. Huang, Tetraspanins in cell migration, Cell Adh. Migr, vol.9, pp.406-415, 2015.

F. Vences-catalan and S. Levy, Immune targeting of tetraspanins involved in cell, Invasion Metastas-. Front. Immunol, vol.9, p.1277, 2018.

H. Hori, S. Yano, K. Koufuji, J. Takeda, and K. Shirouzu, CD9 expression in gastric cancer and its significance, J. Surg. Res, vol.117, pp.208-215, 2004.

J. Huan, Overexpression of CD9 correlates with tumor stage and lymph node metastasis in esophageal squamous cell carcinoma, Int. J. Clin. Exp. Pathol, vol.8, pp.3054-3061, 2015.

P. Kischel, Overexpression of CD9 in human breast cancer cells promotes the development of bone metastases, Anticancer Res, vol.32, pp.5211-5220, 2012.

J. F. Cajot, I. Sordat, T. Silvestre, and B. Sordat, Differential display cloning identifies motility-related protein (MRP1/CD9) as highly expressed in primary compared to metastatic human colon carcinoma cells, Cancer Res, vol.57, pp.2593-2597, 1997.

W. Shi, H. Fan, L. Shum, and R. Derynck, The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation, J. Cell. Biol, vol.148, pp.591-602, 2000.

R. Iwamoto, Heparin-binding EGF-like growth factor, which acts as the diphtheria toxin receptor, forms a complex with membrane protein DRAP27/ CD9, which up-regulates functional receptors and diphtheria toxin sensitivity, EMBO J, vol.13, pp.2322-2330, 1994.

J. Floege and R. J. Johnson, Multiple roles for platelet-derived growth factor in renal disease, Miner. Electrolyte Metab, vol.21, pp.271-282, 1995.

D. Santos, R. C. Garay, C. Antonescu, and C. N. , Charming neighborhoods on the cell surface: plasma membrane microdomains regulate receptor tyrosine kinase signaling, Cell. Signal, vol.27, pp.1963-1976, 2015.

M. E. Hemler, Tetraspanin functions and associated microdomains, Nat. Rev. Mol. Cell Biol, vol.6, pp.801-811, 2005.

M. D. Gutierrez-lopez, A functionally relevant conformational epitope on the CD9 tetraspanin depends on the association with activated beta1 integrin, J. Biol. Chem, vol.278, pp.208-218, 2003.

A. V. Cybulsky, J. V. Bonventre, R. J. Quigg, L. S. Wolfe, and D. J. Salant, Extracellular matrix regulates proliferation and phospholipid turnover in glomerular epithelial cells, Am. J. Physiol, vol.259, pp.326-337, 1990.

A. Baraldi, Beta 1 and beta 3 integrin upregulation in rapidly progressive glomerulonephritis, Nephrol. Dial. Transplant, vol.10, pp.1155-1161, 1995.

N. Prakoura, NFkappaB-induced periostin activates integrin-beta3 signaling to promote renal injury in GN, J. Am. Soc. Nephrol, vol.28, pp.1475-1490, 2017.

S. Kagami, W. A. Border, E. Ruoslahti, and N. A. Noble, Coordinated expression of beta 1 integrins and transforming growth factor-beta-induced matrix proteins in glomerulonephritis, Lab. Invest, vol.69, pp.68-76, 1993.

C. M. Borza, Inhibition of integrin alpha2beta1 ameliorates glomerular injury, J. Am. Soc. Nephrol, vol.23, pp.1027-1038, 2012.

M. Shimizu, Role of integrin-linked kinase in epithelial-mesenchymal transition in crescent formation of experimental glomerulonephritis, Nephrol. Dial. Transplant, vol.21, pp.2380-2390, 2006.

H. Gu, Y. R. Zou, and K. Rajewsky, Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting, Cell, vol.73, pp.1155-1164, 1993.

C. Henique, Genetic and pharmacological inhibition of microRNA-92a maintains podocyte cell cycle quiescence and limits crescentic glomerulonephritis, Nat. Commun, vol.8, p.1829, 2017.

E. R. Weibel and D. M. Gomez, Use of quantitative methods establishes fundamental relations between size and number of lung structures, Science, vol.137, pp.577-585, 1962.

K. E. White and R. W. Bilous, Estimation of podocyte number: a comparison of methods, Kidney Int, vol.66, pp.663-667, 2004.

V. G. Puelles, J. F. Bertram, and M. J. Moeller, Quantifying podocyte depletion: theoretical and practical considerations, Cell Tissue Res, vol.369, pp.229-236, 2017.

V. G. Puelles and J. F. Bertram, Counting glomeruli and podocytes: rationale and methodologies, Curr. Opin. Nephrol. Hypertens, vol.24, pp.224-230, 2015.

S. Turkcan, M. U. Richly, C. I. Bouzigues, J. M. Allain, and A. Alexandrou, Receptor displacement in the cell membrane by hydrodynamic force amplification through nanoparticles, Biophys. J, vol.105, pp.116-126, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00942478