W. G. Couser, Rapidly progressive glomerulonephritis: classification, pathogenetic mechanisms, and therapy, Am. J. Kidney Dis, vol.11, pp.449-464, 1988.

J. C. Jennette and D. B. Thomas, Crescentic glomerulonephritis, Nephrol. Dial. Transplant, vol.16, pp.80-82, 2001.

J. Bariety, Podocyte involvement in human immune crescentic glomerulonephritis, Kidney Int, vol.68, pp.1109-1119, 2005.

P. S. Thorner, M. Ho, V. Eremina, Y. Sado, and S. Quaggin, Podocytes contribute to the formation of glomerular crescents, J. Am. Soc. Nephrol, vol.19, pp.495-502, 2008.

B. Smeets, Tracing the origin of glomerular extracapillary lesions from parietal epithelial cells, J. Am. Soc. Nephrol, vol.20, pp.2604-2615, 2009.

K. Hiromura, Podocyte expression of the CDK-inhibitor p57 during development and disease, Kidney Int, vol.60, pp.2235-2246, 2001.

S. V. Griffin, The role of cell cycle proteins in glomerular disease, Semin. Nephrol, vol.23, pp.569-582, 2003.

L. Barisoni, Podocyte cell cycle regulation and proliferation in collapsing glomerulopathies, Kidney Int, vol.58, pp.137-143, 2000.

K. Nitta, Glomerular expression of cell-cycle-regulatory proteins in human crescentic glomerulonephritis, Virchows Arch, vol.435, pp.422-427, 1999.

M. Nagata, K. Nakayama, Y. Terada, S. Hoshi, and T. Watanabe, Cell cycle regulation and differentiation in the human podocyte lineage, Am. J. Pathol, vol.153, pp.1511-1520, 1998.

M. J. Moeller, Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis, J. Am. Soc. Nephrol, vol.15, pp.61-67, 2004.

M. Ding, Loss of the tumor suppressor Vhlh leads to upregulation of Cxcr4 and rapidly progressive glomerulonephritis in mice, Nat. Med, vol.12, pp.1081-1087, 2006.

G. Bollee, Epidermal growth factor receptor promotes glomerular injury and renal failure in rapidly progressive crescentic glomerulonephritis, Nat. Med, vol.17, pp.1242-1250, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02142778

A. Mirmohammadsadegh, STAT5 phosphorylation in malignant melanoma is important for survival and is mediated through SRC and JAK1 kinases, J. Invest. Dermatol, vol.126, pp.2272-2280, 2006.

O. K. Park, T. S. Schaefer, and D. Nathans, In vitro activation of Stat3 by epidermal growth factor receptor kinase, Proc. Natl Acad. Sci. USA, vol.93, pp.13704-13708, 1996.

H. Shao, H. Y. Cheng, R. G. Cook, and D. J. Tweardy, Identification and characterization of signal transducer and activator of transcription 3 recruitment sites within the epidermal growth factor receptor, Cancer Res, vol.63, pp.3923-3930, 2003.

D. S. Aaronson and C. M. Horvath, A road map for those who don't know JAK-STAT, Science, vol.296, pp.1653-1655, 2002.

C. A. Gebeshuber, Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1, Nat. Med, vol.19, pp.481-487, 2013.

L. He, A microRNA polycistron as a potential human oncogene, Nature, vol.435, pp.828-833, 2005.

A. Bonauer, MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice, Science, vol.324, pp.1710-1713, 2009.

D. Kaluza, Histone deacetylase 9 promotes angiogenesis by targeting the antiangiogenic microRNA-17-92 cluster in endothelial cells, Arterioscler. Thromb. Vasc. Biol, vol.33, pp.533-543, 2013.

M. Li, miR-92a family and their target genes in tumorigenesis and metastasis, Exp. Cell Res, vol.323, pp.1-6, 2014.

M. Brock, Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway, Circ. Res, vol.104, pp.1184-1191, 2009.

J. T. Mendell, miRiad roles for the miR-17-92 cluster in development and disease, Cell, vol.133, pp.217-222, 2008.

Y. Dai, Podocyte-specific deletion of signal transducer and activator of transcription 3 attenuates nephrotoxic serum-induced glomerulonephritis, Kidney Int, vol.84, pp.950-961, 2013.

D. Iliopoulos, S. A. Jaeger, H. A. Hirsch, M. L. Bulyk, and K. Struhl, STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer, Mol. Cell, vol.39, pp.493-506, 2010.

D. Loffler, Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer, Blood, vol.110, pp.1330-1333, 2007.

H. Y. Lin, C. H. Chiang, and W. C. Hung, STAT3 upregulates miR-92a to inhibit RECK expression and to promote invasiveness of lung cancer cells, Br. J. Cancer, vol.109, pp.731-738, 2013.

L. Y. Bourguignon, C. Earle, G. Wong, C. C. Spevak, and K. Krueger, Stem cell marker (Nanog) and Stat-3 signaling promote MicroRNA-21 expression and chemoresistance in hyaluronan/CD44-activated head and neck squamous cell carcinoma cells, Oncogene, vol.31, pp.149-160, 2012.

Z. Zhong, Z. Wen, and J. E. Darnell, Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6, Science, vol.264, pp.95-98, 1994.

J. R. Grandis, Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth In vitro, J. Clin. Invest, vol.102, pp.1385-1392, 1998.

S. P. Gao, Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas, J. Clin. Invest, vol.117, pp.3846-3856, 2007.

C. Lutticken, Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp130, Science, vol.263, pp.89-92, 1994.

T. Kishimoto, Signal transduction through homo-or heterodimers of gp130, Stem Cells, vol.12, pp.37-44, 1994.

U. M. Wegenka, J. Buschmann, C. Lutticken, P. C. Heinrich, and F. Horn, Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level, Mol. Cell Biol, vol.13, pp.276-288, 1993.

J. Schust, B. Sperl, A. Hollis, T. U. Mayer, and T. Berg, Stattic: a small-molecule inhibitor of STAT3 activation and dimerization, Chem. Biol, vol.13, pp.1235-1242, 2006.

H. Dweep, N. Gretz, and C. Sticht, miRWalk database for miRNA-target interactions, Methods Mol. Biol, vol.1182, pp.289-305, 2014.

B. P. Lewis, C. B. Burge, and D. P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.120, pp.15-20, 2005.

S. Matsuoka, p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene, Genes Dev, vol.9, pp.650-662, 1995.

M. H. Lee, I. Reynisdottir, and J. Massague, Cloning of p57KIP2, a cyclindependent kinase inhibitor with unique domain structure and tissue distribution, Genes Dev, vol.9, pp.639-649, 1995.

S. J. Shankland and G. Wolf, Cell cycle regulatory proteins in renal disease: role in hypertrophy, proliferation, and apoptosis, Am. J. Physiol. Renal Physiol, vol.278, pp.515-529, 2000.

J. Krutzfeldt, Silencing of microRNAs in vivo with 'antagomirs', Nature, vol.438, pp.685-689, 2005.

R. Hinkel, Inhibition of microRNA-92a protects against ischemia/ reperfusion injury in a large-animal model, Circulation, vol.128, pp.1066-1075, 2013.

C. Doebele, Members of the microRNA-17-92 cluster exhibit a cellintrinsic antiangiogenic function in endothelial cells, Blood, vol.115, pp.4944-4950, 2010.

X. Loyer, Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice, Circ. Res, vol.114, pp.434-443, 2014.

P. Du, L. Wang, P. Sliz, and R. I. Gregory, A biogenesis step upstream of microprocessor controls miR-17 approximately 92 expression, Cell, vol.162, pp.885-899, 2015.

H. Pavenstadt, W. Kriz, and M. Kretzler, Cell biology of the glomerular podocyte, Physiol. Rev, vol.83, pp.253-307, 2003.

P. Zhang, C. Wong, R. A. Depinho, J. W. Harper, and S. J. Elledge, Cooperation between the Cdk inhibitors p27(KIP1) and p57(KIP2) in the control of tissue growth and development, Genes Dev, vol.12, pp.3162-3167, 1998.

S. J. Shankland, Differential expression of cyclin-dependent kinase inhibitors in human glomerular disease: role in podocyte proliferation and maturation, Kidney Int, vol.58, pp.674-683, 2000.

T. Srivastava, R. E. Garola, and H. K. Singh, Cell-cycle regulatory proteins in the podocyte in collapsing glomerulopathy in children, Kidney Int, vol.70, pp.529-535, 2006.

S. Wang, J. H. Kim, K. C. Moon, H. K. Hong, and H. S. Lee, Cell-cycle mechanisms involved in podocyte proliferation in cellular lesion of focal segmental glomerulosclerosis, Am. J. Kidney Dis, vol.43, pp.19-27, 2004.

J. Bariety, Glomerular epithelial-mesenchymal transdifferentiation in pauci-immune crescentic glomerulonephritis, Nephrol. Dial. Transplant, vol.18, pp.1777-1784, 2003.

E. Kemeny, M. J. Mihatsch, U. Durmuller, and F. Gudat, Podocytes loose their adhesive phenotype in focal segmental glomerulosclerosis, Clin. Nephrol, vol.43, pp.71-83, 1995.

A. Pozzi and R. Zent, Integrins in kidney disease, J. Am. Soc. Nephrol, vol.24, pp.1034-1039, 2013.

S. S. Hayek, A tripartite complex of suPAR, APOL1 risk variants and alphavbeta3 integrin on podocytes mediates chronic kidney disease, Nat. Med, vol.23, pp.945-953, 2017.

M. J. Roman, Prevalence and correlates of accelerated atherosclerosis in systemic lupus erythematosus, N. Engl. J. Med, vol.349, pp.2399-2406, 2003.

R. Suppiah, A model to predict cardiovascular events in patients with newly diagnosed Wegener's granulomatosis and microscopic polyangiitis, Arthritis Care Res, vol.63, pp.588-596, 2011.

N. Wall and L. Harper, Complications of long-term therapy for ANCAassociated systemic vasculitis, Nat. Rev. Nephrol, vol.8, pp.523-532, 2012.

M. D. Morgan, Increased incidence of cardiovascular events in patients with antineutrophil cytoplasmic antibody-associated vasculitides: a matchedpair cohort study, Arthritis Rheum, vol.60, pp.3493-3500, 2009.

M. J. Moeller, S. K. Sanden, A. Soofi, R. C. Wiggins, and L. B. Holzman, Podocyte-specific expression of cre recombinase in transgenic mice, Genesis, vol.35, pp.39-42, 2003.

M. D. Muzumdar, B. Tasic, K. Miyamichi, L. Li, and L. Luo, A global doublefluorescent Cre reporter mouse, Genesis, vol.45, pp.593-605, 2007.

A. Moh, Role of STAT3 in liver regeneration: survival, DNA synthesis, inflammatory reaction and liver mass recovery, Lab. Invest, vol.87, pp.1018-1028, 2007.

T. Shigehara, Inducible podocyte-specific gene expression in transgenic mice, J. Am. Soc. Nephrol, vol.14, 1998.

J. M. Daniel, Inhibition of miR-92a improves re-endothelialization and prevents neointima formation following vascular injury, Cardiovasc. Res, vol.103, pp.564-572, 2014.

J. Huang, Lutheran/basal cell adhesion molecule accelerates progression of crescentic glomerulonephritis in mice, Kidney Int, vol.85, pp.1123-1136, 2014.

C. Henique, Nuclear factor erythroid 2-related factor 2 drives podocytespecific expression of peroxisome proliferator-activated receptor gamma essential for resistance to crescentic GN, J. Am. Soc. Nephrol, vol.27, pp.172-188, 2016.

M. Takemoto, A new method for large scale isolation of kidney glomeruli from mice, Am. J. Pathol, vol.161, pp.799-805, 2002.

M. Boerries, Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks, Kidney Int, vol.83, pp.1052-1064, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001262

O. Lenoir, Direct action of endothelin-1 on podocytes promotes diabetic glomerulosclerosis, J. Am. Soc. Nephrol, vol.25, pp.1050-1062, 2014.

A. Sengul, R. Santisuk, W. Xing, and C. Kesavan, Systemic administration of an antagomir designed to inhibit miR-92, a regulator of angiogenesis, failed to modulate skeletal anabolic response to mechanical loading, Physiol. Res, vol.62, pp.221-226, 2013.