, and were glassglass homogenized in lysis buffer (RIPA buffer, composition: 50 mM TRIS hydrochloride pH7.5, 1 mM EGTA, 1 mM EDTA, 1% Triton X-100, 0.1% SDS, 50 mM NaF, 150 mM NaCl, 0.5% Sodium deoxycholate, 0.1% mercaptoethanol, 1mM sodium orthovanadate) [91]. After centrifugation (15,000 g for 15 min at 4°C), protein concentration was determined by BCA-Assay (Pierce, 23225), A5441), rabbit anti-ULK1 (Cell Signaling Technology, 8054), rabbit anti-p-ULK1 Ser757, vol.6888, p.1, 14203.

, Ser317 (Cell Signaling Technology, 6887; discontinued), rabbit anti-PRKAA/AMPK? (Cell Signaling Technology, 2532), rabbit anti-p-PRKAA/AMPK? Thr172 (Cell Signaling Technology, 4188), guinea pig anti-SQSTM1 (Progen, GP62-C), rabbit anti-LC3B (Cell Signaling Technology, 2775), rabbit anti-RPS6 (Cell Signaling Technology, 2217), rabbit anti

N. R. Hill, S. T. Fatoba, and J. L. Oke, Global prevalence of chronic kidney disease -a systematic review and meta-analysis, PLoS One, vol.11, issue.7, p.158765, 2016.

J. H. Miner, Focusing on the glomerular slit diaphragm: podocin enters the picture, Am J Pathol, vol.160, issue.1, pp.3-5, 2002.

N. Wanner, B. Hartleben, and N. Herbach, Unraveling the role of podocyte turnover in glomerular aging and injury, J Am Soc Nephrol, vol.25, issue.4, pp.707-716, 2014.

T. Kawakami, I. G. Gomez, and S. Ren, Deficient autophagy results in mitochondrial dysfunction and FSGS, J Am Soc Nephrol, vol.26, issue.5, pp.1040-1052, 2015.

B. Hartleben, M. Godel, and C. Meyer-schwesinger, Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice, J Clin Invest, vol.120, issue.4, pp.1084-1096, 2010.

A. M. Choi, S. W. Ryter, and B. Levine, Autophagy in human health and disease, N Engl J Med, vol.368, issue.7, pp.651-662, 2013.

N. N. Noda and F. Inagaki, Mechanisms of autophagy, Annu Rev Biophys, vol.44, pp.101-122, 2015.

P. Boya, F. Reggiori, and P. Codogno, Emerging regulation and functions of autophagy, Nat Cell Biol, vol.15, issue.7, pp.713-720, 2013.

E. L. Axe, S. A. Walker, and M. Manifava, Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum, J Cell Biol, vol.182, issue.4, pp.685-701, 2008.

C. A. Lamb, T. Yoshimori, and S. A. Tooze, The autophagosome: origins unknown, biogenesis complex, Nat Rev Mol Cell Biol, vol.14, issue.12, pp.759-774, 2013.

L. Ge and R. Schekman, The ER-Golgi intermediate compartment feeds the phagophore membrane, Autophagy, vol.10, issue.1, pp.170-172, 2014.

Y. Kabeya, N. Mizushima, and T. Ueno, LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing, Embo J, vol.19, issue.21, pp.5720-5728, 2000.

D. J. Klionsky, K. Abdelmohsen, and A. Abe, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.12, issue.1, pp.1-222, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01439629

J. H. Hurley and L. N. Young, Mechanisms of autophagy initiation, Annu Rev Biochem, vol.86, pp.225-244, 2017.

N. Mizushima, T. Noda, and T. Yoshimori, A protein conjugation system essential for autophagy, Nature, vol.395, issue.6700, pp.395-398, 1998.

N. Mizushima, T. Yoshimori, and Y. Ohsumi, Mouse Apg10 as an Apg12-conjugating enzyme: analysis by the conjugation-mediated yeast two-hybrid method, FEBS Lett, vol.532, issue.3, pp.450-454, 2002.

T. Proikas-cezanne, S. Waddell, and A. Gaugel, WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy, Oncogene, vol.23, issue.58, pp.9314-9325, 2004.

M. B. Schaaf, T. G. Keulers, and M. A. Vooijs, LC3/GABARAP family proteins: autophagy-(un)related functions, Faseb J, vol.30, issue.12, pp.3961-3978, 2016.

H. Popelka and D. J. Klionsky, Analysis of the native conformation of the LIR/AIM motif in the Atg8/LC3/GABARAP-binding proteins, Autophagy, vol.11, issue.12, pp.2153-2159, 2015.

J. Joachim, H. B. Jefferies, and M. Razi, Activation of ULK kinase and autophagy by GABARAP trafficking from the centrosome is regulated by WAC and GM130, Mol Cell, vol.60, issue.6, pp.899-913, 2015.

P. M. Wong, C. Puente, and I. G. Ganley, The ULK1 complex: sensing nutrient signals for autophagy activation, Autophagy, vol.9, issue.2, pp.124-137, 2013.

N. Mizushima, The role of the Atg1/ULK1 complex in autophagy regulation, Curr Opin Cell Biol, vol.22, issue.2, pp.132-139, 2010.

C. H. Jung, C. B. Jun, and S. H. Ro, ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery, Mol Biol Cell, vol.20, issue.7, pp.1992-2003, 2009.

I. G. Ganley, H. Lam-du, and J. Wang, ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy, J Biol Chem, vol.284, issue.18, pp.12297-12305, 2009.

N. Hosokawa, T. Hara, and T. Kaizuka, Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy, Mol Biol Cell, vol.20, issue.7, pp.1981-1991, 2009.

A. Tagawa, M. Yasuda, and S. Kume, Impaired podocyte autophagy exacerbates proteinuria in diabetic nephropathy, Diabetes, vol.65, issue.3, pp.755-767, 2016.

O. Lenoir, M. Jasiek, and C. Henique, Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis, Autophagy, vol.11, issue.7, pp.1130-1145, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01539607

M. Godel, B. Hartleben, and N. Herbach, Role of mTOR in podocyte function and diabetic nephropathy in humans and mice, J Clin Invest, vol.121, issue.6, pp.2197-2209, 2011.

T. B. Huber, C. L. Edelstein, and B. Hartleben, Emerging role of autophagy in kidney function, diseases and aging, Autophagy, vol.8, issue.7, pp.1009-1031, 2012.

K. Inoki, H. Mori, and J. Wang, mTORC1 activation in podocytes is a critical step in the development of diabetic nephropathy in mice, J Clin Invest, vol.121, issue.6, pp.2181-2196, 2011.

S. Zschiedrich, T. Bork, and W. Liang, Targeting mTOR signaling can prevent the progression of FSGS, J Am Soc Nephrol, 2017.

M. Laplante and D. M. Sabatini, mTOR signaling in growth control and disease, Cell, vol.149, issue.2, pp.274-293, 2012.

S. Kimura, T. Noda, and T. Yoshimori, Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3, Autophagy, vol.3, issue.5, pp.452-460, 2007.

L. Li, Z. V. Wang, and J. A. Hill, New autophagy reporter mice reveal dynamics of proximal tubular autophagy, J Am Soc Nephrol, vol.25, issue.2, pp.305-315, 2014.

P. Codogno and A. J. Meijer, Autophagy in the liver, J Hepatol, vol.59, issue.2, pp.389-391, 2013.

R. Cursio, P. Colosetti, and P. Codogno, The role of autophagy in liver diseases: mechanisms and potential therapeutic targets, Biomed Res Int, p.480508, 2015.

N. Mizushima, T. Yoshimori, and B. Levine, Methods in mammalian autophagy research, Cell, vol.140, issue.3, pp.313-326, 2010.

D. J. Klionsky, F. C. Abdalla, and H. Abeliovich, Guidelines for the use and interpretation of assays for monitoring autophagy, Autophagy, vol.8, issue.4, pp.445-544, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01439629

M. J. Moeller, S. K. Sanden, and A. Soofi, Podocyte-specific expression of cre recombinase in transgenic mice, Genesis, vol.35, issue.1, pp.39-42, 2003.

N. Mizushima, A. Yamamoto, and M. Matsui, In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker, Mol Biol Cell, vol.15, issue.3, pp.1101-1111, 2004.

J. E. Wiggins, M. Goyal, and S. K. Sanden, Podocyte hypertrophy, "adaptation," and "decompensation" associated with glomerular enlargement and glomerulosclerosis in the aging rat: prevention by calorie restriction, J Am Soc Nephrol, vol.16, issue.10, pp.2953-2966, 2005.

N. Dey, N. Ghosh-choudhury, and F. Das, PRAS40 acts as a nodal regulator of high glucose-induced TORC1 activation in glomerular mesangial cell hypertrophy, J Cell Physiol, vol.225, issue.1, pp.27-41, 2010.

G. Bjorkoy, T. Lamark, and A. Brech, p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death, J Cell Biol, vol.171, issue.4, pp.603-614, 2005.

J. Kim, M. Kundu, and B. Viollet, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat Cell Biol, vol.13, issue.2, pp.132-141, 2011.

D. F. Egan, D. B. Shackelford, and M. M. Mihaylova, Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy, Science, vol.331, issue.6016, pp.456-461, 2011.

D. Egan, J. Kim, and R. J. Shaw, The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR, Autophagy, vol.7, issue.6, pp.643-644, 2011.

K. J. Petherick, O. J. Conway, and C. Mpamhanga, Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy, J Biol Chem, vol.290, issue.18, pp.11376-11383, 2015.

W. G. Couser, G. Remuzzi, and S. Mendis, The contribution of chronic kidney disease to the global burden of major noncommunicable diseases, Kidney Int, vol.80, issue.12, pp.1258-1270, 2011.

P. W. Eggers, Has the incidence of end-stage renal disease in the USA and other countries stabilized?, Curr Opin Nephrol Hypertens, vol.20, issue.3, pp.241-245, 2011.

J. Bommer, Prevalence and socio-economic aspects of chronic kidney disease, Nephrol Dial Transplant, vol.17, issue.11, pp.8-12, 2002.

P. Beckerman, J. Bi-karchin, and A. S. Park, Transgenic expression of human APOL1 risk variants in podocytes induces kidney disease in mice, Nat Med, vol.23, issue.4, pp.429-438, 2017.

M. Chevrier, N. Brakch, and L. Celine, Autophagosome maturation is impaired in Fabry disease, Autophagy, vol.6, issue.5, pp.589-599, 2010.

A. F. Fernandez, S. Sebti, and Y. Wei, Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice, Nature, vol.558, issue.7708, pp.136-140, 2018.

J. O. Pyo, S. M. Yoo, and H. H. Ahn, Overexpression of Atg5 in mice activates autophagy and extends lifespan, Nat Commun, vol.4, p.2300, 2013.

T. Noda and Y. Ohsumi, Tor, a phosphatidylinositol kinase homologue, controls autophagy in yeast, J Biol Chem, vol.273, issue.7, pp.3963-3966, 1998.

R. C. Scott, O. Schuldiner, and T. P. Neufeld, Role and regulation of starvation-induced autophagy in the Drosophila fat body, Dev Cell, vol.7, issue.2, pp.167-178, 2004.

L. Shang, S. Chen, and F. Du, Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK, Proc Natl Acad Sci, vol.108, issue.12, pp.4788-4793, 2011.

M. Narita, A. R. Young, and S. Arakawa, Spatial coupling of mTOR and autophagy augments secretory phenotypes, Science, vol.332, issue.6032, pp.966-970, 2011.

B. Nyfeler, P. Bergman, and E. Triantafellow, Relieving autophagy and 4EBP1 from rapamycin resistance, Mol Cell Biol, vol.31, issue.14, pp.2867-2876, 2011.

S. Alers, A. S. Loffler, and S. Wesselborg, Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks, Mol Cell Biol, vol.32, issue.1, pp.2-11, 2012.

Y. C. Kim and K. L. Guan, mTOR: a pharmacologic target for autophagy regulation, J Clin Invest, vol.125, issue.1, pp.25-32, 2015.

P. J. Roach and . Ampk-->-ulk1-->-autophagy, Mol Cell Biol, vol.31, issue.15, pp.3082-3084, 2011.

E. A. Dunlop and A. R. Tee, mTOR and autophagy: a dynamic relationship governed by nutrients and energy, Semin Cell Dev Biol, vol.36, pp.121-129, 2014.

M. M. Mihaylova and R. J. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism, Nat Cell Biol, vol.13, issue.9, pp.1016-1023, 2011.

D. M. Gwinn, D. B. Shackelford, and D. F. Egan, AMPK phosphorylation of raptor mediates a metabolic checkpoint, Mol Cell, vol.30, issue.2, pp.214-226, 2008.

E. A. Dunlop, D. K. Hunt, and H. A. Acosta-jaquez, ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding, Autophagy, vol.7, issue.7, pp.737-747, 2011.

A. S. Loffler, S. Alers, and A. M. Dieterle, Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop, Autophagy, vol.7, issue.7, pp.696-706, 2011.

D. P. Cina, T. Onay, and A. Paltoo, Inhibition of MTOR disrupts autophagic flux in podocytes, J Am Soc Nephrol, vol.23, issue.3, pp.412-420, 2012.

D. P. Cina, T. Onay, and A. Paltoo, MTOR regulates autophagic flux in the glomerulus, Autophagy, vol.8, issue.4, pp.696-698, 2012.

E. Arias, H. Koga, and A. Diaz, Lysosomal mTORC2/PHLPP1/Akt regulate chaperone-mediated autophagy, Mol Cell, vol.59, issue.2, pp.270-284, 2015.

D. Berchtold, M. Piccolis, and N. Chiaruttini, Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis, Nat Cell Biol, vol.14, issue.5, pp.542-547, 2012.

H. Pan, X. P. Zhong, and S. Lee, Sustained activation of mTORC1 in macrophages increases AMPKalpha-dependent autophagy to maintain cellular homeostasis, BMC Biochem, vol.17, issue.1, p.14, 2016.

C. Schell, O. Kretz, and W. Liang, The rapamycin-sensitive complex of mammalian target of rapamycin is essential to maintain male fertility, Am J Pathol, vol.186, issue.2, pp.324-336, 2016.

H. S. Pinheiro, T. A. Amaro, and A. M. Braga, Post-rapamycin proteinuria: incidence, evolution, and therapeutic handling at a single center, Transplant Proc, vol.38, issue.10, pp.3476-3478, 2006.

H. Izzedine, I. Brocheriou, and C. Frances, Post-transplantation proteinuria and sirolimus, N Engl J Med, vol.353, pp.2088-2089, 2005.

A. S. Perlman, E. H. Kim, and B. Kallakury, Clinically significant proteinuria following the administration of sirolimus to renal transplant recipients, Drug Metab Lett, vol.1, issue.4, pp.267-271, 2007.

N. Pallet and C. Legendre, Adverse events associated with mTOR inhibitors, Expert Opin Drug Saf, vol.12, issue.2, pp.177-186, 2013.

E. Letavernier, P. Bruneval, and C. Mandet, High sirolimus levels may induce focal segmental glomerulosclerosis de novo, Clin J Am Soc Nephrol, vol.2, issue.2, pp.326-333, 2007.

P. Polak, N. Cybulski, and J. N. Feige, Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration, Cell Metab, vol.8, issue.5, pp.399-410, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00351013

H. Mori, K. Inoki, and H. Munzberg, Critical role for hypothalamic mTOR activity in energy balance, Cell Metab, vol.9, issue.4, pp.362-374, 2009.

V. Eremina, J. A. Jefferson, and J. Kowalewska, VEGF inhibition and renal thrombotic microangiopathy, N Engl J Med, vol.358, issue.11, pp.1129-1136, 2008.

T. Hara, K. Nakamura, and M. Matsui, Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice, Nature, vol.441, issue.7095, pp.885-889, 2006.

M. Buzzai, R. G. Jones, and R. K. Amaravadi, Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth, Cancer Res, vol.67, issue.14, pp.6745-6752, 2007.

K. Mahalati and B. D. Kahan, Clinical pharmacokinetics of sirolimus, Clin Pharmacokinet, vol.40, issue.8, pp.573-585, 2001.

C. Schell, L. Baumhakl, and S. Salou, N-wasp is required for stabilization of podocyte foot processes, J Am Soc Nephrol, vol.24, issue.5, pp.713-721, 2013.

M. D. Muzumdar, B. Tasic, and K. Miyamichi, A global double-fluorescent Cre reporter mouse, Genesis, vol.45, issue.9, pp.593-605, 2007.

J. J. Kang, T. I. Sipos, and A. , Quantitative imaging of basic functions in renal (patho)physiology, Am J Physiol Renal Physiol, vol.291, issue.2, pp.495-502, 2006.

M. J. Hackl, J. L. Burford, and K. Villanueva, Tracking the fate of glomerular epithelial cells in vivo using serial multiphoton imaging in new mouse models with fluorescent lineage tags, Nat Med, vol.19, issue.12, pp.1661-1666, 2013.

M. Takemoto, L. He, and J. Norlin, Large-scale identification of genes implicated in kidney glomerulus development and function, Embo J, vol.25, issue.5, pp.1160-1174, 2006.

M. Boerries, F. Grahammer, and S. Eiselein, Molecular fingerprinting of the podocyte reveals novel gene and protein regulatory networks, Kidney Int, vol.83, issue.6, pp.1052-1064, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001262

M. Takemoto, N. Asker, and H. Gerhardt, A new method for large scale isolation of kidney glomeruli from mice, Am J Pathol, vol.161, issue.3, pp.799-805, 2002.

M. A. Saleem, M. J. O'hare, and J. Reiser, A conditionally immortalized human podocyte cell line demonstrating nephrin and podocin expression, J Am Soc Nephrol, vol.13, issue.3, pp.630-638, 2002.

M. J. Ryan, G. Johnson, and J. Kirk, HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney, Kidney Int, vol.45, issue.1, pp.48-57, 1994.