P. Adlard, J. Parncutt, D. Finkelstein, and A. Bush, Cognitive loss in zinc Transporter-3 Knock-out mice: a Phenocopy for the synaptic and memory deficits of Alzheimer's disease?, J. Neurosci, vol.30, pp.1631-1636, 2010.

A. Ajjimaporn, J. Swinscoe, S. Shavali, P. Govitrapong, and M. Ebadi, Metallothionein provides zinc-mediated protective effects against methamphetamine toxicity in SK-N-SH cells, Brain Res. Bull, vol.67, pp.466-475, 2005.

A. Ajjimaporn, S. Shavali, M. Ebadi, and P. Govitrapong, Zinc rescues dopaminergic SK-N-SH cell lines from methamphetamine-induced toxicity, Brain Res. Bull, vol.77, pp.361-366, 2008.

C. Anderson, M. Kumar, S. Xiong, and T. Tzounopoulos, Cell-specific gain modulation by synaptically released zinc in cortical circuits of audition, vol.6, pp.1-20, 2017.

S. Ayton, P. Lei, and A. Bush, Biometals and their therapeutic implications in Alzheimer's disease, Neurotherapeutics, vol.12, pp.109-120, 2015.

A. Berg and D. Bayliss, Striatal cholinergic interneurons express a receptor-insensitive Homomeric TASK-3-Like Background K + Current, J. Neurophysiol, vol.97, pp.1546-1552, 2007.

C. Blomeley and E. Bracci, Substance P depolarizes striatal projection neurons and facilitates their glutamatergic inputs, J. Physiol, vol.586, pp.2143-2155, 2008.

A. Bonito-oliva, D. Masini, and G. Fisone, A mouse model of non-motor symptoms in Parkinson's disease: focus on pharmacological interventions targeting affective dysfunctions, Front. Behav. Neurosci, vol.8, pp.1-12, 2014.

A. Bonito-oliva, M. Pignatelli, G. Spigolon, T. Yoshitake, S. Seiler et al., Cognitive impairment and dentate gyrus synaptic dysfunction in experimental parkinsonism, Biol. Psychiatry, vol.75, pp.701-710, 2014.

I. Branchi, I. D'andrea, M. Armida, D. Carnevale, M. Ajmone-cat et al., Striatal 6-OHDA lesion in mice: investigating early neurochemical changes underlying Parkinson's disease. Behav, Brain Res, vol.208, pp.137-143, 2010.

P. Calabresi, D. Centonze, and G. Bernardi, Electrophysiology of dopamine in normal and denervated striatal neurons, Trends Neurosci, vol.23, pp.17-20, 2000.

N. Chen, A. Moshaver, and L. Raymond, Differential sensitivity of recombinant Nmethyl-D-aspartate receptor subtypes to zinc inhibition, Mol. Pharmacol, vol.51, pp.1015-1023, 1997.

T. Cole, H. Wenzel, K. Kafer, P. Schwartzkroin, and R. Palmiter, Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene, Proc. Natl. Acad. Sci, vol.96, pp.1716-1721, 1999.

G. Danscher and M. Stoltenberg, Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells, J. Histochem. Cytochem, vol.53, pp.141-153, 2005.

T. Das, J. Hwang, and K. Poston, Episodic recognition memory and the hippocampus in Parkinson's disease: a review, Cortex, vol.113, pp.191-209, 2019.

S. Daumas, H. Halley, and J. Lassalle, Disruption of hippocampal CA3 network: effects on episodic-like memory processing in C57BL/6J mice, Eur. J. Neurosci, vol.20, pp.597-600, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02351308

P. Davidson, D. Anaki, J. Saint-cyr, T. Chow, and M. Moscovitch, Exploring the recognition memory deficit in Parkinson's disease: estimates of recollection versus familiarity, Brain, vol.129, pp.1768-1779, 2006.

C. Delaville, P. De-deurwaerdère, and A. Benazzouz, Noradrenaline and Parkinson's disease, Front. Syst. Neurosci, vol.5, pp.1-12, 2011.

D. Dexter, A. Carayon, F. Javoy-agid, Y. Agid, F. Wells et al., Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia, Brain, vol.114, pp.1953-1975, 1991.

K. Dzahini, C. Dentresangle, M. Le-cavorsin, A. Bertrand, I. Detraz et al., Pre-synaptic glutamate-induced activation of DA release in the striatum after partial nigral lesion, J. Neurochem, vol.113, pp.1459-1470, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00627888

A. Eagle, O. Olumolade, and H. Otani, Partial dopaminergic denervation-induced impairment in stimulus discrimination acquisition in parkinsonian rats: a model for early Parkinson's disease, Neurosci. Res, vol.92, pp.71-79, 2015.

G. Eseames, D. Acuna-castroviejo, J. Lebn, and F. Vives, Melatonin interaction with magnesium and zinc in the response of the striatum to sensorimotor cortical stimulation in the rat, J. Pineal Res, vol.24, pp.123-129, 1998.

C. Frederickson, Neurobiology of zinc and zinc-containing neurons, Int. Rev. Neurobiol, pp.145-238, 1989.

J. Sikora, Neurobiology of Disease, vol.134, p.104681, 2020.

C. Frederickson, E. Kasarskis, D. Ringo, and R. Frederickson, A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (Bouton zinc) in the brain, J. Neurosci. Methods, vol.20, pp.90042-90044, 1987.

R. Frederickson, C. Frederickson, and G. Danscher, In situ binding of Bouton zinc reversibly disrupts performance on a spatial memory task, Behav. Brain Res, vol.38, pp.90021-90027, 1990.

C. Frederickson, S. Suh, D. Silva, C. Frederickson, and R. Thompson, Zinc and health : current status and future directions importance of zinc in the central nervous system : the zinc-containing, J. Nutr, vol.130, pp.1471-1483, 2000.

C. Frederickson, M. Hershfinkel, and L. Giblin, The gluzinergic synapse: who's talking and who's listening?, Synaptic Plasticity and Transsynaptic Signaling, pp.123-137, 2005.

C. Frederickson, J. Koh, and A. Bush, The neurobiology of zinc in health and disease, Nat. Rev. Neurosci, vol.6, pp.449-462, 2005.

K. Fujita, M. Ostaszewski, Y. Matsuoka, S. Ghosh, E. Glaab et al., Integrating pathways of Parkinson's disease in a molecular interaction map, Mol. Neurobiol, vol.49, pp.88-102, 2014.

S. Hussain and S. Ali, Zinc potentiates 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine induced dopamine depletion in caudate nucleus of mice brain, Neurosci. Lett, vol.335, pp.25-28, 2002.

Q. Jiang, M. Li, C. Papasian, D. Branigan, Z. Xiong et al., Characterization of acid-sensing ion channels in medium spiny neurons of mouse striatum, Neuroscience, vol.162, pp.55-66, 2009.

A. Kashani, C. Betancur, B. Giros, E. Hirsch, and S. Mestikawy, Altered expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in Parkinson disease, Neurobiol. Aging, vol.28, pp.568-578, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00154872

S. Kodirov, S. Takizawa, J. Joseph, E. Kandel, G. Shumyatsky et al., Synaptically released zinc gates long-term potentiation in fear conditioning pathways, Proc. Natl. Acad. Sci. U. S. A, vol.103, pp.15218-15223, 2006.

S. Kong, B. Chan, J. Park, K. Hill, J. Aitken et al., Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes ?-Synuclein externalization via exosomes, Hum. Mol. Genet, vol.23, pp.2816-2833, 2014.

A. Kumar, I. Ahmad, S. Shukla, B. Singh, D. Patel et al., Effect of zinc and paraquat co-exposure on neurodegeneration: modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats, Free Radic. Res, vol.44, pp.950-965, 2010.

A. Kumar, B. Singh, I. Ahmad, S. Shukla, D. Patel et al., Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity, Brain Res, vol.1438, pp.48-64, 2012.

J. Lassalle, T. Bataille, and H. Halley, Reversible inactivation of the hippocampal mossy fiber synapses in mice impairs spatial learning, but neither consolidation nor memory retrieval, in the Morris navigation task, Neurobiol. Learn. Mem, vol.73, pp.243-257, 2000.

J. Lee, H. Son, J. Choi, E. Cho, J. Kim et al., Cytosolic labile zinc accumulation in degenerating dopaminergic neurons of mouse brain after MPTP treatment, Brain Res, vol.1286, pp.208-214, 2009.

E. Leonibus, T. Pascucci, S. Lopez, A. Oliverio, M. Amalric et al., Spatial deficits in a mouse model of Parkinson disease, Psychopharmacology, vol.194, pp.517-525, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01384868

E. Leonibus, F. Managò, F. Giordani, F. Petrosino, S. Lopez et al., Metabotropic glutamate receptors 5 blockade reverses spatial memory deficits in a mouse model of Parkinson's disease, Neuropsychopharmacology, vol.34, pp.729-738, 2009.

M. Liguz-lecznar and J. Skangiel-kramska, Vesicular glutamate transporters (VGLUTs): the three musketeers of glutamatergic system, Acta Neurobiol. Exp. (Wars), vol.67, pp.207-218, 2007.

H. Lo, H. Chiang, A. Lin, H. Chiang, Y. Chu et al., Synergistic effects of dopamine and Zn2+ on the induction of PC12 cell death and dopamine depletion in the striatum: possible implication in the pathogenesis of Parkinson's disease, Neurobiol. Dis, vol.17, pp.54-61, 2004.

J. Lotharius and P. Brundin, Pathogenesis of parkinson's disease: dopamine, vesicles and ?-synuclein, Nat. Rev. Neurosci, vol.3, pp.932-942, 2002.

C. Low, F. Zheng, P. Lyuboslavsky, and S. Traynelis, Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors, Proc. Natl. Acad. Sci. U. S. A, vol.97, pp.11062-11067, 2000.

G. Martel, C. Hevi, O. Friebely, T. Baybutt, and G. Shumyatsky, Zinc transporter 3 is involved in learned fear and extinction, but not in innate fear, Learn. Mem, vol.17, pp.582-590, 2010.

D. Masini, C. Lopes-aguiar, A. Bonito-oliva, D. Papadia, R. Andersson et al., The histamine H3 receptor antagonist thioperamide rescues circadian rhythm and memory function in experimental parkinsonism, Transl. Psychiatry, vol.7, pp.1088-1089, 2017.

A. Massie, A. Schallier, K. Vermoesen, L. Arckens, and Y. Michotte, Biphasic and bilateral changes in striatal VGLUT1 and 2 protein expression in hemi-Parkinson rats, Neurochem. Int, vol.57, pp.111-118, 2010.

N. Maurice, M. Liberge, F. Jaouen, S. Ztaou, M. Hanini et al., Striatal cholinergic interneurons control motor behavior and basal ganglia function in experimental parkinsonism, Cell Rep, vol.13, pp.657-666, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02332256

N. Mbiydzenyuy, H. Ninsiima, M. Valladares, and C. Pieme, Zinc and linoleic acid pre-treatment attenuates biochemical and histological changes in the midbrain of rats with rotenone-induced parkinsonism, BMC Neurosci, vol.19, 2018.

E. Méndez-Álvarez, R. Soto-otero, Á. Hermida-ameijeiras, A. López-real, and J. Labandeira-garc?á, Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson's disease, Biochim. Biophys. Acta Mol. basis Dis, vol.1586, issue.01, pp.77-78, 2002.

D. Morris and C. Levenson, Ion channels and zinc: mechanisms of neurotoxicity and neurodegeneration, J. Toxicol, vol.2012, pp.1-6, 2012.

C. Nozaki, A. Vergnano, D. Filliol, A. Ouagazzal, A. Le-goff et al., Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit, Nat. Neurosci, vol.14, pp.1017-1022, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00655884

J. Obeso, M. Rodriguez-oroz, M. Rodriguez, J. Lanciego, J. Artieda et al., Pathophysiology of the basal ganglia in Parkinson's disease, Trends Neurosci, vol.23, pp.8-19, 2000.

P. Paoletti, P. Ascher, and J. Neyton, High-affinity zinc inhibition of NMDA NR1-NR2A receptors, J. Neurosci, vol.17, pp.5711-5725, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00139995

P. Paoletti, F. Perin-dureau, A. Fayyazuddin, A. Le-goff, I. Callebaut et al., Molecular organization of a zinc binding N-terminal modulatory domain in a NMDA receptor subunit, Neuron, vol.28, p.163, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00139991

P. Paoletti, A. Vergnano, B. Barbour, and M. Casado, Zinc at glutamatergic synapses, Neuroscience, vol.158, pp.126-136, 2009.

C. Papagno and L. Trojano, Cognitive and behavioral disorders in Parkinson's disease: an update. I: cognitive impairments, Neurol. Sci, vol.39, pp.215-223, 2018.

G. Paxinos and K. Franklin, The Mouse Brain in Stereotaxic Coordinates, 2001.

R. Radford and S. Lippard, Chelators for investigating zinc metalloneurochemistry, Curr. Opin. Chem. Biol, vol.17, pp.129-136, 2013.

D. Raju, T. Ahern, D. Shah, T. Wright, D. Standaert et al., Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism, Eur. J. Neurosci, vol.27, pp.1647-1658, 2008.

P. Rane, J. Shields, M. Heffernan, Y. Guo, S. Akbarian et al., The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD, Neuropharmacology, vol.62, pp.2409-2412, 2012.

D. Reiss, O. Walter, L. Bourgoin, B. Kieffer, and A. Ouagazzal, New automated procedure to assess context recognition memory in mice, Psychopharmacology, vol.231, pp.4337-4347, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01384062

S. Robinson, P. Freeman, C. Moore, J. Touchon, L. Krentz et al., Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function, Exp. Neurol, vol.180, p.50, 2003.

I. Russo, L. Bubacco, and E. Greggio, LRRK2 and neuroinflammation: partners in crime in Parkinson's disease?, J. Neuroinflammation, vol.11, pp.1-9, 2014.

N. Saini and W. Schaffner, Zinc supplement greatly improves the condition of parkin mutant Drosophila, Biol. Chem, vol.391, pp.513-518, 2010.

S. L. Sensi, P. Paoletti, A. I. Bush, and I. Sekler, Zinc in the physiology and pathology of the CNS, Nat. Rev. Neurosci, vol.10, pp.780-791, 2009.

S. Sensi, P. Paoletti, J. Koh, E. Aizenman, A. Bush et al., The neurophysiology and pathology of brain zinc, J. Neurosci, vol.31, pp.16076-16085, 2011.

C. Sheline, J. Zhu, W. Zhang, C. Shi, and A. Cai, Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo, Neurodegener. Dis, vol.11, pp.49-58, 2012.

C. Sindreu and D. Storm, Modulation of neuronal signal transduction and memory formation by synaptic zinc, Front. Behav. Neurosci, vol.5, pp.1-14, 2011.

C. Sindreu, R. Palmiter, and D. Storm, Zinc transporter ZnT-3 regulates presynaptic Erk1/2 signaling and hippocampus-dependent memory, Proc. Natl. Acad. Sci, vol.108, pp.3366-3370, 2011.

J. Sorensen, L. Slomianka, J. Christensen, and J. Zimmer, Zinc-containing telencephalic connections to the rat striatum: a combined Fluoro-gold tracing and histochemical study, Exp. Brain Res, vol.105, pp.370-382, 1995.

E. Stelmashook, N. Isaev, E. Genrikhs, G. Amelkina, L. Khaspekov et al., Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer's and Parkinson's diseases, Biochem, vol.79, pp.391-396, 2014.

M. Suzuki, Y. Fujise, Y. Tsuchiya, H. Tamano, and A. Takeda, Excess influx of Zn 2+ into dentate granule cells affects object recognition memory via attenuated LTP, Neurochem. Int, vol.87, pp.60-65, 2015.

A. Takeda, Y. Kodama, M. Ohnuma, and S. Okada, Zinc transport from the striatum and substantia nigra, Brain Res. Bull, vol.47, issue.98, pp.70-77, 1998.

J. Sikora, Neurobiology of Disease, vol.134, p.104681, 2020.

A. Takeda, N. Sakurada, S. Kanno, A. Minami, and N. Oku, Response of extracelluar zinc in the ventral hippocampus against novelty stress, J. Neurochem, vol.99, pp.670-676, 2006.

A. Takeda, H. Tamano, S. Imano, and N. Oku, Increases in extracellular zinc in the amygdala in acquisition and recall of fear experience and their roles in response to fear, Neuroscience, vol.168, pp.715-722, 2010.

H. Tamano, H. Morioka, R. Nishio, A. Takeuchi, and A. Takeda, Blockade of rapid influx of extracellular Zn2+ into Nigral dopaminergic neurons overcomes paraquatinduced Parkinson's disease in rats, Mol. Neurobiol, vol.56, pp.4539-4548, 2018.

H. Tamano, H. Morioka, R. Nishio, A. Takeuchi, and A. Takeda, AMPA-induced extracellular Zn2+ influx into nigral dopaminergic neurons causes movement disorder in rats, Neurotoxicology, vol.69, pp.23-28, 2018.

T. Tsunemi and D. Krainc, Zn2+ dyshomeostasis caused by loss of ATP13A2/PARK9 leads to lysosomal dysfunction and alpha-synuclein accumulation, Hum. Mol. Genet, vol.23, pp.2791-2801, 2014.

A. Vergnano, N. Rebola, L. Savtchenko, P. Pinheiro, M. Casado et al., Zinc dynamics and action at excitatory synapses, Neuron, vol.82, pp.1101-1114, 2014.

R. Villalba, A. Mathai, and Y. Smith, Morphological changes of glutamatergic synapses in animal models of Parkinson's disease, Front. Neuroanat, vol.9, pp.1-16, 2015.

K. Vogt, J. Mellor, G. Tong, and R. Nicoll, The actions of synaptically released zinc at hippocampal mossy fiber synapses, Neuron, vol.26, issue.00, pp.81149-81155, 2000.

C. Whittington, J. Podd, and S. Stewart-williams, Memory deficits in Parkinson's disease, J. Clin. Exp. Neuropsychol, vol.28, pp.738-754, 2006.

A. Yakimovskii, Effects of zinc chloride administered into the striatum on motor behavior in rats, Neurosci. Behav. Physiol, vol.42, pp.725-729, 2012.

A. Yakimovskii and I. Stepanov, Effect of zinc chloride on picrotoxin-induced hyperkinesis depends on its concentration in solution injected into rat Neostriatum, Bull. Exp. Biol. Med, vol.150, pp.665-667, 2011.

Z. Yan and D. Surmeier, D5 dopamine receptors enhance Zn2+-sensitive GABAA currents in striatal cholinergic interneurons through a PKA/PP1 Cascade, Neuron, vol.19, pp.1115-1126, 1997.

T. Yang, P. Wu, I. Chung, J. Jiang, M. Fann et al., Cell death caused by the synergistic effects of zinc and dopamine is mediated by a stress sensor gene Gadd45b -implication in the pathogenesis of Parkinson's disease, J. Neurochem, vol.139, pp.120-133, 2016.

S. Zhai, A. Tanimura, S. Graves, W. Shen, and D. Surmeier, Striatal synapses, circuits, and Parkinson's disease, Curr. Opin. Neurobiol, vol.48, pp.9-16, 2018.

P. Zis, R. Erro, C. Walton, A. Sauerbier, and K. Chaudhuri, The range and nature of non-motor symptoms in drug-naive Parkinson's disease patients: a state-of-the-art systematic review, 2015.

S. Ztaou, J. Lhost, I. Watabe, G. Torromino, and M. Amalric, Striatal cholinergic interneurons regulate cognitive and affective dysfunction in partially dopamine-depleted mice, Eur. J. Neurosci, vol.48, pp.2988-3004, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01974268