NRIP1 (nuclear receptor interacting protein 1)
Vincent Cavailles, Marion Lapierre

To cite this version:

HAL Id: inserm-02438798
https://www.hal.inserm.fr/inserm-02438798
Submitted on 14 Jan 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
NRIP1 (nuclear receptor interacting protein 1)
Vincent Cavaillès and Marion Lapierre

IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, Montpellier F-34298, France. vincent.cavailles@inserm.fr; marion.lapierre@inserm.fr

Published in Atlas Database: April 2018
Online updated version : http://AtlasGeneticsOncology.org/Genes/NRIP1ID44067ch21q11.html
Printable original version : http://documents.i-revues.inist.fr/bitstream/handle/2042/69015/04-2018-NRIP1ID44067ch21q11.pdf
DOI: 10.4267/2042/69015
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2018 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract
Review on NRIP1, with data on DNA, on the protein encoded, and where the gene is implicated.

Keywords
NRIP1; Transcription factor

Identity

Other names
FLJ77253, RIP140
HGNC (Hugo)
NRIP1
Location
21q11.2

DNA/RNA

Figure 1: Schematic representation of FZD4 gene that contains a total of two exons and FZD4 transcript.

Description
The gene encompasses approximately 100 Kb and may contain up to 7 exons. The entire protein-coding region is contained within the last exon.

Transcription
Transcription is complex. Alternative spliced transcripts containing distinct combinations of 5' non-coding exons occur. Alternative promoters have been described and are proposed to mediate tissue specific expression of NRIP1. NRIP1 is induced by a number of hormone nuclear receptors including the receptors for estrogen, retinoic acid, androgen, progestins, vitamin D3, peroxisome proliferators-activated receptor-alpha (PPARalpha) and estrogen related receptor-alpha (ERRalpha). NRIP1 gene transcription is also induced by E2F transcription factors.

NRIP1 mRNA is widely expressed in various tissues and cell types.

Protein
Description

NRIP1 (nuclear receptor interacting protein 1) consists of 1158 amino acids. NRIP1 contains ten LXXLL nuclear receptor interaction motifs and four transcriptional repression domains (RD 1-4). NRIP1 also contains four c-terminal binding protein (CtBP) interaction motifs. NRIP1 activity is regulated by a variety of posttranslational modifications including acetylation, methylation, phosphorylation, sumoylation, and pyridoxal-phosphate (PLP) conjugation.

Expression

NRIP1 is expressed at low levels in most tissues and is induced in response to hormonal signals. NRIP1 is highly expressed in metabolic and reproductive organs and tissues including the liver, adipose tissue, skeletal muscle, ovary and endometrium.

Localisation

NRIP1 is mainly expressed in the nucleus and contains two putative nuclear localization signals (NLS).

Function

NRIP1 is a co-repressor of a large number of nuclear receptors. NRIP1 interacts preferentially with ligand-bound nuclear receptors and inhibits transactivation by recruitment of histone deacetylases and CtBP. Knockout mice studies revealed that NRIP1 has a physiologic role in energy homeostasis, muscle metabolism, adipocyte function, mitochondrial activity, inflammation, reproduction and cognition. Data suggest that these roles are mediated by NRIP1 repression of nuclear receptor mediated gene expression including gene expression mediated by the estrogen receptor, liver X receptor, PPARs, steroidogenic factor 1 (SF1) and ERR.

NRIP1 has been shown to regulate retinoic acid mediated differentiation and growth suppression of human embryonal carcinoma cells and the proliferation of breast cancer cells in vitro. A potential role for NRIP1 in cancer cachexia has been suggested. Interestingly, NRIP1 also regulates the activity of other transcription factors including E2Fs and NFKB.

The fact that NRIP1 expression can be regulated by multiple transcription factors and especially nuclear receptors and their ligands and that NRIP1 can inhibits the activity of multiple nuclear receptors implies a potential role in the biology of hormone-dependent cancers. This role in cancer biology which has recently been described in colon, stomach, breast and cervix.

Homology

NRIP1 is highly conserved throughout vertebrates. There is only a single isoform in humans and mice.

Mutations

Germinal

Several synonymous and non-synonymous SNPs have been identified. To date no somatic tumor mutations have been noted.
- Arg448Gly has been associated with endometriosis.
- Gly75Gly has been associated with male infertility.

Implicated in

Hormone dependent cancers

In a variety of cancer cell culture systems mouse models and tissue arrays, NRIP1 has been shown to regulate the activity of a number of nuclear receptors involved in hormone-dependent cancers including estrogen, retinoid, progesterone and androgen receptors. Moreover, NRIP1 mRNA is finely regulated during cell cycle progression, modulating cell growth and apoptosis. Finally, NRIP1 overexpression is associated with a significantly shorter overall survival of cervical cancer patients and discriminates luminal breast cancers.

Cancer cachexia

NRIP1 was induced in livers of starved, septic, and tumor-bearing mice. Liver-specific knockdown of NRIP1 led to increased hepatic TG release and alleviated hepatic steatosis in tumor-bearing, cachectic animals. NRIP1 was found to control the expression of lipid-metabolizing genes in liver.

Obesity and metabolic disorders

NRIP1 knockout mice are lean and are resistant to high-fat diet induced obesity. NRIP1 regulates genes involved in energy homeostasis in metabolic organs. Moreover, low level of NRIP1 restores the rates of fatty-acids uptake in the basal state, in part via a
NRIP1 (nuclear receptor interacting protein 1)

Reduction in upstream insulin signaling. In addition, increased NRIP1 level may be closely associated with inflammation and disorder of lipid and glucose metabolism in diabetic patients. In addition, detectable serum NRIP1 protein level changes is associated with weight loss in humans.

Infertility

NRIP1 knockout mice are infertile due to a defect in ovulation. Also the above-mentioned SNPs have been proposed to be associated with endometriosis and male fertility.

Gastro-intestinal homeostasis and tumorigenesis

Using molecular and cellular approaches, transgenic mouse models and human colorectal biopsies, NRIP1 has been shown to inhibit cell proliferation and apoptosis in the murine intestinal epithelium. In addition, NRIP1 exerts a negative control on Wnt/beta-catenin signaling by positively regulating the expression of the tumor suppressor gene APC. High NRIP1 expression is associated with a significantly longer overall survival of colorectal cancer patients. Interestingly, whereas NRIP1 expression tends to decrease in colorectal cancers as compared to adjacent normal tissues, an increase of its expression was noticed in gastric cancer as compared to normal stomach.

Cognition and neural cells

The NRIP1 gene depletion in mice results in learning and memory deficits as well as stress response, bringing to light a major role for this transcriptional coregulator in the neurophysiological developmental mechanisms underlying cognitive functions. In addition, NRIP1 plays a relevant role in Down syndrome mitochondrial dysfunction. Moreover, NRIP1 expression increases during neural differentiation of human embryonic stem cells and is negatively correlated with stem cell markers Oct4 and Sox2 during early stages of neural differentiation.

Aging and longevity

The deletion of NRIP1 in female mice can significantly extend longevity compared to wild-type females.

Immunity and inflammation

Overexpression of NRIP1 in macrophages results in M1-like polarization and expansion during the inflammatory response. Conversely, decreased expression of NRIP1 in macrophages reduces the number of M1-like macrophages and increases the number of alternatively polarized cells, which collectively promote endotoxin tolerance and relieve inflammation.

References

Atlas Genet Cytogenet Oncol Haematol. 2018; 22(12)
1;101(22):8437
fat accumulation Proc Natl Acad Sci U S A 2004 Jun
Parker MG. Nuclear receptor corepressor RIP140 regulates S, Bell J, So PW, Medina
Leonardsson G, Steel JH, Christian
catenin pathway Oncotarget 2015 Sep 22;6(28):25701
QS, Xu M, Feng L, Bei JX, Zeng YX. NOP14 suppresses Lei JJ, Peng RJ, Kuang BH, Yuan ZY, Qin T, Liu
Biochim Biophys Acta 2015 Aug;1856(1):144
Jalaguier S, Teyssier C, Cavaillès V. The emerging role of
Commun 2001 Jul 27;285(4):969
Kerley JS, Olsen SL, Freemantle SJ, Spinella MJ. Rodriguez C, Elarouci
syndrome Hum Mol Genet 2014 Aug 15;23(16):4406
attenuation counteracts mitochondrial dysfunction in Down
Patergnani S, Cicatiello R, Scrima R, Za
Izzo A, Manco R, Bonfiglio F, Cal G, De Cristofaro T,
of nuclear co
Huq MD, Ha SG, Barcelona H, Wei LN. Lysine methylation of
Ho PC, Wei LN. Biological activities of receptor-interacting protein 140 in adipocytes and metabolic diseases Curr Diabetes Rev 2012 Nov;8(6):452-7
Karasawa T, Takahashi M. RIP140 as a novel therapeutic target in the treatment of atherosclerosis J Mol Cell Cardiol 2015 Apr;81:136-8
Lin YW, Montassier E, Knights D, Wei LN. Gut microbiota from metabolic disease-resistant, macrophage-specific RIP140 knockdown mice improves metabolic phenotype and gastrointestinal integrity Sci Rep 2016 Dec 8;6:38599
Liu PS, Lin YW, Lee B, McCrady-Spitzer SK, Levine JA, Wei LN. Reducing RIP140 expression in macrophage alters ATM infiltration, facilitates white adipose tissue browning, and prevents high-fat diet-induced insulin resistance Diabetes 2014 Dec;63(12):4021-31
Naulty J, Christian M, Parker MG. Distinct functions for RIP140 in development, inflammation, and metabolism Trends Endocrinol Metab 2013 Sep;24(9):451-9
Rytinki MM, Palvimo JJ. SUMOylation modulates the transcription repressor function of RIP140 J Biol Chem 2008 Apr 25;283(17):11586-95
Vo N, Fjeld C, Goodman RH. Acetylation of nuclear hormone receptor-interacting protein RIP140 regulates binding of the transcriptional corepressor CIBP Mol Cell Biol 2001 Sep;21(18):6181-8
NRIP1 (nuclear receptor interacting protein 1)

This article should be referenced as such: