O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, pp.162-165, 1992.

W. A. May, M. L. Gishizky, S. L. Lessnick, L. B. Lunsford, B. C. Lewis et al., Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation, Proc. Natl Acad. Sci. USA, vol.90, pp.5752-5756, 1993.

Y. Castillero-trejo, S. Eliazer, L. Xiang, J. A. Richardson, and R. L. Ilaria, Expression of the EWS/FLI-1 oncogene in murine primary bone-derived cells Results in EWS/FLI-1-dependent, ewing sarcoma-like tumors, Cancer Res, vol.65, pp.8698-8705, 2005.

N. Riggi, L. Cironi, P. Provero, M. L. Suva, K. Kaloulis et al., Development of Ewing's sarcoma from primary bone marrow-derived mesenchymal progenitor cells, Cancer Res, vol.65, pp.11459-11468, 2005.

K. Tanaka, T. Iwakuma, K. Harimaya, H. Sato, and Y. Iwamoto, EWS-Fli1 antisense oligodeoxynucleotide inhibits proliferation of human Ewing's sarcoma and primitive neuroectodermal tumor cells, J. Clin. Invest, vol.99, pp.239-247, 1997.

S. Hu-lieskovan, J. D. Heidel, D. W. Bartlett, M. E. Davis, and T. J. Triche, Sequence-specific knockdown of EWS-FLI1 by targeted, nonviral delivery of small interfering RNA inhibits tumor growth in a murine model of metastatic Ewing's sarcoma, Cancer Res, vol.65, pp.8984-8992, 2005.

F. Nakatani, K. Tanaka, R. Sakimura, Y. Matsumoto, T. Matsunobu et al., Identification of p21WAF1/CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein, J. Biol. Chem, vol.278, pp.15105-15115, 2003.

M. Fukuma, H. Okita, J. Hata, and A. Umezawa, Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma, Oncogene, vol.22, pp.1-9, 2003.

G. Sanchez, D. Bittencourt, K. Laud, J. Barbier, O. Delattre et al., Alteration of cyclin D1 transcript elongation by a mutated transcription factor upregulates the oncogenic D1b splice isoform in cancer, Proc. Natl Acad. Sci. USA, 105, pp.6004-6009, 2008.

X. Li, K. Tanaka, F. Nakatani, T. Matsunobu, R. Sakimura et al., Transactivation of cyclin E gene by EWS-Fli1 and antitumor effects of cyclin dependent kinase inhibitor on Ewing's family tumor cells, Int. J. Cancer, vol.116, pp.385-394, 2005.

L. Dauphinot, C. De-oliveira, T. Melot, N. Sevenet, V. Thomas et al., Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2and c-Myc expression, Oncogene, vol.20, pp.3258-3265, 2001.

K. B. Hahm, Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein, Nat. Genet, vol.23, p.481, 1999.

K. Scotlandi, S. Benini, M. Sarti, M. Serra, P. L. Lollini et al., Insulinlike growth factor I receptor-mediated circuit in Ewing's sarcoma/ peripheral neuroectodermal tumor: a possible therapeutic target, Cancer Res, vol.56, pp.4570-4574, 1996.

A. Prieur, F. Tirode, P. Cohen, and O. Delattre, EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulinlike growth factor binding protein 3, Mol. Cell. Biol, vol.24, pp.7275-7283, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-02438604

S. Benini, M. C. Manara, V. Cerisano, S. Perdichizzi, R. Strammiello et al., Contribution of MEK/MAPK and PI3-K signaling pathway to the malignant behavior of Ewing's sarcoma cells: therapeutic prospects, Int. J. Cancer, vol.108, pp.358-366, 2004.

E. J. Sohn, H. Li, K. Reidy, L. F. Beers, B. L. Christensen et al., EWS/FLI1 oncogene activates caspase 3 transcription and triggers apoptosis in vivo, Cancer Res, vol.70, pp.1154-1163, 2010.

D. Javelaud, J. Wietzerbin, O. Delattre, and F. Besancon, Induction of p21Waf1/Cip1 by TNFalpha requires NF-kappaB activity and antagonizes apoptosis in Ewing tumor cells, Oncogene, vol.19, pp.61-68, 2000.

J. D. Hancock and S. L. Lessnick, A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature, Cell Cycle, vol.7, pp.250-256, 2008.

M. Kauer, J. Ban, R. Kofler, B. Walker, S. Davis et al., ) A molecular function map of Ewing's sarcoma, PloS One, vol.4, p.5415, 2009.

H. Kitano, Looking beyond the details: a rise in systemoriented approaches in genetics and molecular biology, Curr. Genet, vol.41, pp.1-10, 2002.

A. M. Gonzalez-angulo, B. T. Hennessy, and G. B. Mills, Future of personalized medicine in oncology: a systems biology approach, J. Clin. Oncol, vol.28, pp.2777-2783, 2010.

T. Akutsu, S. Miyano, and S. Kuhara, Inferring qualitative relations in genetic networks and metabolic pathways, Bioinformatics, vol.16, pp.727-734, 2000.

M. Kinsey, R. Smith, and S. L. Lessnick, NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's sarcoma, Mol. Cancer Res, vol.4, pp.851-859, 2006.

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, P. Charbord et al., Mesenchymal stem cell features of Ewing tumors, Cancer Cell, vol.11, pp.421-429, 2007.

O. Sahin, H. Frohlich, C. Lobke, U. Korf, S. Burmester et al., Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance, BMC Syst. Biol, vol.3, p.1, 2009.

M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler et al., Gene ontology: tool for the unification of biology, Gene Ontology Consortium. Nat. Genet, vol.25, pp.25-29, 2000.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genomewide expression profiles, Proc. Natl Acad. Sci. USA, vol.102, pp.15545-15550, 2005.

A. Zinovyev, E. Viara, L. Calzone, and E. Barillot, BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks, Bioinformatics, vol.24, pp.876-877, 2008.

O. Alter, P. O. Brown, and D. Botstein, Singular value decomposition for genome-wide expression data processing and modeling, Proc. Natl Acad. Sci. USA, vol.97, pp.10101-10106, 2000.

G. Dennis, B. T. Sherman, D. A. Hosack, J. Yang, W. Gao et al., DAVID: Database for annotation, visualization, and integrated discovery, Genome Biol, vol.4, p.3, 2003.

W. Huang-da, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc, vol.4, pp.44-57, 2009.

H. A. Chansky, F. Barahmand-pour, Q. Mei, W. Kahn-farooqi, A. Zielinska-kwiatkowska et al., Targeting of EWS/FLI-1 by RNA interference attenuates the tumor phenotype of Ewing's sarcoma cells in vitro, J. Orthop. Res, vol.22, pp.910-917, 2004.

K. Oda, Y. Matsuoka, A. Funahashi, and H. Kitano, A comprehensive pathway map of epidermal growth factor receptor signaling, Mol. Syst. Biol, vol.1, p.10, 2005.

L. Calzone, A. Gelay, A. Zinovyev, F. Radvanyi, and E. Barillot, A comprehensive modular map of molecular interactions in RB/E2F pathway, Mol. Syst. Biol, vol.4, p.173, 2008.

D. Thieffry and R. Thomas, Qualitative analysis of gene networks, Pac. Symp. Biocomput, pp.77-88, 1998.

M. Krull, S. Pistor, N. Voss, A. Kel, I. Reuter et al., TRANSPATH: an information resource for storing and visualizing signaling pathways and their pathological aberrations, Nucleic Acids Res, vol.34, pp.546-551, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00314881

P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

E. Demir, M. P. Cary, S. Paley, K. Fukuda, C. Lemer et al., The BioPAX community standard for pathway data sharing, Nat. Biotechnol, vol.28, pp.935-942, 2010.

D. Surdez, M. Benetkiewicz, V. Perrin, Z. Han, G. Pierron et al., Targeting the EWSR1-FLI1 oncogene-induced protein kinase PKC-b abolishes ewing sarcoma growth, Cancer Res, vol.72, pp.4494-4503, 2012.

N. Guillon, F. Tirode, V. Boeva, A. Zynovyev, E. Barillot et al., The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function, PLoS One, vol.4, p.4932, 2009.

V. Boeva, D. Surdez, N. Guillon, F. Tirode, A. P. Fejes et al., De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis, Nucleic Acids Res, vol.38, p.126, 2010.

G. H. Wei, G. Badis, M. F. Berger, T. Kivioja, K. Palin et al., Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo, EMBO J, vol.29, pp.2147-2160, 2010.

R. H. Medema, G. J. Kops, J. L. Bos, and B. M. Burgering, AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1, Nature, vol.404, pp.782-787, 2000.

V. Modur, R. Nagarajan, B. M. Evers, and J. Milbrandt, FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer, J. Biol. Chem, vol.277, pp.47928-47937, 2002.

S. Labied, T. Kajihara, P. A. Madureira, L. Fusi, M. C. Jones et al., Progestins regulate the expression and activity of the forkhead transcription factor FOXO1 in differentiating human endometrium, Mol. Endocrinol, vol.20, pp.35-44, 2006.

M. X. Wu, Z. Ao, K. V. Prasad, R. Wu, and S. F. Schlossman, IEX-1L, an apoptosis inhibitor involved in NF-kappaB-mediated cell survival, Science, vol.281, pp.998-1001, 1998.

J. Garcia, Y. Ye, V. Arranz, C. Letourneux, G. Pezeron et al., IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation, EMBO J, vol.21, pp.5151-5163, 2002.

T. Kataoka and J. Tschopp, N-terminal fragment of c-FLIP(L) processed by caspase 8 specifically interacts with TRAF2 and induces activation of the NF-kappaB signaling pathway, Mol. Cell. Biol, vol.24, pp.2627-2636, 2004.

K. Nowak, K. Killmer, C. Gessner, and W. Lutz, E2F-1 regulates expression of FOXO1 and FOXO3a, Biochim. Biophys. Acta, vol.1769, pp.244-252, 2007.

M. X. Wu, Roles of the stress-induced gene IEX-1 in regulation of cell death and oncogenesis, Apoptosis, vol.8, pp.11-18, 2003.

O. Micheau, S. Lens, O. Gaide, K. Alevizopoulos, and J. Tschopp, NF-kappaB signals induce the expression of c-FLIP, Mol. Cell. Biol, vol.21, pp.5299-5305, 2001.

M. S. Ricci, Z. Jin, M. Dews, D. Yu, A. Thomas-tikhonenko et al., Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity, Mol. Cell. Biol, vol.24, pp.8541-8555, 2004.

P. J. Iaquinta and J. A. Lees, Life and death decisions by the E2F transcription factors, Curr. Opin. Cell Biol, vol.19, pp.649-657, 2007.

M. S. Cline, M. Smoot, E. Cerami, A. Kuchinsky, N. Landys et al., Integration of biological networks and gene expression data using Cytoscape, Nat. Protoc, vol.2, pp.2366-2382, 2007.

, The ENCODE (ENCyclopedia Of DNA Elements) Project, The ENCODE Project Consortium, vol.306, pp.636-640, 2004.

J. Bai, Y. Zhou, G. Chen, J. Zeng, J. Ding et al., Overexpression of Cullin1 is associated with poor prognosis of patients with gastric cancer, Hum. Pathol, vol.42, pp.375-383, 2011.

G. Chen and G. Li, Increased Cul1 expression promotes melanoma cell proliferation through regulating p27 expression, Int. J. Oncol, vol.37, pp.1339-1344, 2010.

T. Matsunobu, K. Tanaka, T. Nakamura, F. Nakatani, R. Sakimura et al., The possible role of EWS-Fli1 in evasion of senescence in Ewing family tumors, Cancer Res, vol.66, pp.803-811, 2006.

D. Frescas and M. Pagano, Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer, Nat. Rev, vol.8, pp.438-449, 2008.

Y. F. Chang, C. M. Cheng, L. K. Chang, Y. J. Jong, and C. Y. Yuo, The F-box protein Fbxo7 interacts with human inhibitor of apoptosis protein cIAP1 and promotes cIAP1 ubiquitination, Biochem. Biophys. Res. Commun, vol.342, pp.1022-1026, 2006.

C. Mackintosh, D. J. Garc?´a-dom?´nguez, J. L. Ordo´n?ez, A. Ginel-picardo, P. G. Smith et al., WEE1 accumulation and deregulation of S-phase proteins mediate MLN4924 potent inhibitory effect on Ewing sarcoma cells, Oncogene, vol.32, pp.1441-1451, 2012.

M. Sachdeva, S. Zhu, F. Wu, H. Wu, V. Walia et al., represses c-Myc through induction of the tumor suppressor miR-145, Proc. Natl Acad. Sci. USA, vol.106, pp.3207-3212, 2009.

G. A. Franzetti, K. Laud-duval, D. Bellanger, M. H. Stern, X. Sastre-garau et al., MiR-30a-5p connects EWS-FLI1 and CD99, two major therapeutic targets in Ewing tumor, 2012.

, Oncogene

E. De-alava, C. R. Antonescu, A. Panizo, D. Leung, P. A. Meyers et al., Prognostic impact of P53 status in Ewing sarcoma, Cancer, vol.89, pp.783-792, 2000.

H. Huang, P. B. Illei, Z. Zhao, M. Mazumdar, A. G. Huvos et al., Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse, J. Clin. Oncol, vol.23, pp.548-558, 2005.

J. Ban, I. M. Bennani-baiti, M. Kauer, K. L. Schaefer, C. Poremba et al., EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma, Cancer Res, vol.68, pp.7100-7109, 2008.

G. Picarda, F. Lamoureux, L. Geffroy, P. Delepine, T. Montier et al., Preclinical evidence that use of TRAIL in Ewing's sarcoma and osteosarcoma therapy inhibits tumor growth, prevents osteolysis, and increases animal survival, Clin. Cancer Res, vol.16, pp.2363-2374, 2010.

D. N. Aryee, S. Niedan, M. Kauer, R. Schwentner, I. M. Bennani-baiti et al., Hypoxia modulates EWS-FLI1 transcriptional signature and enhances the malignant properties of Ewing's sarcoma cells in vitro, Cancer Res, vol.70, pp.4015-4023, 2010.

T. G. Grunewald, I. Diebold, I. Esposito, S. Plehm, K. Hauer et al., STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors, Mol. Cancer Res, vol.10, pp.52-65, 2012.

D. Navarro, N. Agra, A. Pestana, J. Alonso, and J. M. Gonzalez-sancho, The EWS/FLI1 oncogenic protein inhibits expression of the Wnt inhibitor DICKKOPF-1 gene and antagonizes beta-catenin/TCF-mediated transcription, Carcinogenesis, vol.31, pp.394-401, 2010.

J. P. Zwerner, J. Joo, K. L. Warner, L. Christensen, S. Hu-lieskovan et al., The EWS/FLI1 oncogenic transcription factor deregulates GLI1, Oncogene, vol.27, pp.3282-3291, 2008.

L. Yang, H. M. Hu, A. Zielinska-kwiatkowska, and H. A. Chansky, FOXO1 is a direct target of EWS-Fli1 oncogenic fusion protein in Ewing's sarcoma cells, Biochem. Biophys. Res. Commun, vol.402, pp.129-134, 2010.

U. Sauer, M. Heinemann, and N. Zamboni, Genetics. Getting closer to the whole picture, Science, vol.316, pp.550-551, 2007.

J. Saez-rodriguez, S. Mirschel, R. Hemenway, S. Klamt, E. D. Gilles et al., Visual setup of logical models of signaling and regulatory networks with ProMoT, BMC Bioinformatics, vol.7, p.506, 2006.

L. G. Alexopoulos, J. Saez-rodriguez, B. D. Cosgrove, D. A. Lauffenburger, and P. K. Sorger, Networks inferred from biochemical data reveal profound differences in toll-like receptor and inflammatory signaling between normal and transformed hepatocytes, Mol. Cell Proteomics, vol.9, pp.1849-1865, 2010.