D. P. Bartel, Micrornas: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

R. C. Friedman, K. Farh, C. B. Burge, and D. P. Bartel, Most mammalian mrnas are conserved targets of micrornas, Genome Res, vol.19, pp.92-105, 2009.

R. Schickel, B. Boyerinas, S. M. Park, and M. E. Peter, Micrornas: key players in the immune system, differentiation, tumorigenesis and cell death, Oncogene, vol.27, pp.5959-5974, 2008.

K. Farh, A. Grimson, C. Jan, B. P. Lewis, and W. K. Johnston, The widespread impact of mammalian micrornas on mrna repression and evolution, Science, vol.310, pp.1817-1821, 2005.

A. Esquela-kerscher and F. J. Slack, Oncomirs -micrornas with a role in cancer, Nat Rev Cancer, vol.6, pp.259-269, 2006.

S. K. Lee and G. A. Calin, Non-coding rnas and cancer: new paradigms in oncology, Discov Med, vol.11, pp.245-254, 2011.

J. Lu, G. Getz, E. A. Miska, E. Alvarez-saavedra, and J. Lamb, Microrna expression profiles classify human cancers, Nature, vol.435, pp.834-838, 2005.

T. W. Nilsen, Mechanisms of microrna-mediated gene regulation in animal cells, Trends Genet, vol.23, pp.243-249, 2007.

J. C. Huang, T. Babak, T. W. Corson, G. Chua, and S. Khan, Using expression profiling data to identify human microrna targets, Nat Methods, vol.4, pp.1045-1049, 2007.

D. Baek, J. Villn, C. Shin, F. D. Camargo, and S. P. Gygi, The impact of micrornas on protein output, Nature, vol.455, pp.64-71, 2008.

M. Selbach, B. Schwanhusser, N. Thierfelder, Z. Fang, and R. Khanin, Widespread changes in protein synthesis induced by micrornas, Nature, vol.455, pp.58-63, 2008.

H. Guo, N. T. Ingolia, J. S. Weissman, and D. P. Bartel, Mammalian micrornas predominantly act to decrease target mrna levels, Nature, vol.466, pp.835-840, 2010.

S. D. Hsu, F. M. Lin, W. Y. Wu, C. Liang, and W. C. Huang, mirtarbase: a database curates experimentally validated microrna-target interactions, Nucleic Acids Res, vol.39, pp.163-169, 2011.

G. L. Papadopoulos, M. Reczko, V. A. Simossis, P. Sethupathy, and A. G. Hatzigeorgiou, The database of experimentally supported targets: a functional update of tarbase, Nucleic Acids Res, vol.37, pp.155-158, 2009.

M. Maragkakis, T. Vergoulis, P. Alexiou, M. Reczko, and K. Plomaritou, Diana-microt web server upgrade supports fly and worm mirna target prediction and bibliographic mirna to disease association, Nucleic Acids Res, vol.39, pp.145-148, 2011.

A. Grimson, K. Farh, W. K. Johnston, P. Garrett-engele, and L. P. Lim, Microrna targeting specificity in mammals: determinants beyond seed pairing, Mol Cell, vol.27, pp.91-105, 2007.

A. Krek, D. Grn, M. N. Poy, R. Wolf, and L. Rosenberg, Combinatorial microrna target predictions, Nat Genet, vol.37, pp.495-500, 2005.

B. John, A. J. Enright, A. Aravin, T. Tuschl, and C. Sander, Human microrna targets, PLoS Biol, vol.2, p.363, 2004.

M. Thomas, J. Lieberman, and A. Lal, Desperately seeking microrna targets, Nat Struct Mol Biol, vol.17, pp.1169-1174, 2010.

P. Alexiou, M. Maragkakis, G. L. Papadopoulos, M. Reczko, and A. G. Hatzigeorgiou, Lost in translation: an assessment and perspective for computational microrna target identification, Bioinfor-matics, vol.25, pp.3049-3055, 2009.

P. Sethupathy, M. Megraw, and A. G. Hatzigeorgiou, A guide through present computational approaches for the identification of mammalian microrna targets, Nat Methods, vol.3, pp.881-886, 2006.

Y. P. Wang and K. B. Li, Correlation of expression profiles between micrornas and mrna targets using nci-60 data, BMC Genomics, vol.10, p.218, 2009.

W. Ritchie, M. Rajasekhar, S. Flamant, and J. Rasko, Conserved expression patterns predict microrna targets, PLoS Comput Biol, vol.5, p.1000513, 2009.

L. Wang, A. L. Oberg, Y. W. Asmann, H. Sicotte, and S. K. Mcdonnell, Genome-wide transcriptional profiling reveals microrna-correlated genes and biological processes in human lymphoblastoid cell lines, PLoS One, vol.4, p.5878, 2009.

J. C. Huang, Q. D. Morris, and B. J. Frey, Bayesian inference of microrna targets from sequence and expression data, J Comput Biol, vol.14, pp.550-563, 2007.

S. Nam, M. Li, K. Choi, C. Balch, and S. Kim, Microrna and mrna integrated analysis (mmia): a web tool for examining biological functions of microrna expression, Nucleic Acids Res, vol.37, pp.356-362, 2009.

S. Cho, Y. Jun, S. Lee, H. S. Choi, and S. Jung, ) mirgator v2.0 : an integrated system for functional investigation of micrornas, Nucleic Acids Res, 2010.

C. J. Creighton, A. K. Nagaraja, S. M. Hanash, M. M. Matzuk, and P. H. Gunaratne, A bioinformatics tool for linking gene expression profiling results with public databases of microrna target predictions, RNA, vol.14, pp.2290-2296, 2008.

G. Sales, A. Coppe, A. Bisognin, M. Biasiolo, and S. Bortoluzzi, Magia, a web-based tool for mirna and genes integrated analysis, Nucleic Acids Res, vol.38, pp.352-359, 2010.

S. Landais, S. Landry, P. Legault, and E. Rassart, Oncogenic potential of the mir-106-363 cluster and its implication in human t-cell leukemia, Cancer Res, vol.67, pp.5699-5707, 2007.

G. A. Calin, C. Sevignani, C. D. Dumitru, T. Hyslop, and E. Noch, Human microrna genes are frequently located at fragile sites and genomic regions involved in cancers, Proc Natl Acad Sci U S A, vol.101, pp.2999-3004, 2004.

K. Huppi, N. Volfovsky, T. Runfola, T. L. Jones, and M. Mackiewicz, The identification of micrornas in a genomically unstable region of human chromosome 8q24, Mol Cancer Res, vol.6, pp.212-221, 2008.

A. Arvand and C. T. Denny, Biology of ews/ets fusions in ewing's family tumors, Oncogene, vol.20, pp.5747-5754, 2001.

O. Delattre, J. Zucman, T. Melot, X. S. Garau, and J. M. Zucker, The ewing family of tumors-a subgroup of small-round-cell tumors defined by specific chimeric transcripts, N Engl J Med, vol.331, pp.294-299, 1994.

R. Janknecht, Ews-ets oncoproteins: the linchpins of ewing tumors, Gene, vol.363, pp.1-14, 2005.

N. Riggi and I. Stamenkovic, The biology of ewing sarcoma, Cancer Lett, vol.254, pp.1-10, 2007.

F. Xiao, Z. Zuo, G. Cai, S. Kang, and X. Gao, mirecords: an integrated resource for micrornatarget interactions, Nucleic Acids Res, vol.37, pp.105-110, 2009.

E. Enerly, I. Steinfeld, K. Kleivi, S. K. Leivonen, and M. R. Aure, ) mirnamrna integrated analysis reveals roles for mirnas in primary breast tumors, PLoS One, vol.6, p.16915, 2011.

J. Burchard, C. Zhang, A. M. Liu, R. Poon, and N. Lee, ) microrna-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma, Mol Syst Biol, vol.6, p.402, 2010.

F. J. Mller, L. C. Laurent, D. Kostka, I. Ulitsky, and R. Williams, Regulatory networks define phenotypic classes of human stem cell lines, Nature, vol.455, pp.401-405, 2008.

R. L. Prueitt, M. Yi, R. S. Hudson, T. A. Wallace, and T. M. Howe, Expression of micrornas and protein-coding genes associated with perineural invasion in prostate cancer, Prostate, vol.68, pp.1152-1164, 2008.

Y. Benjamini, D. Drai, G. Elmer, N. Kafkafi, and I. Golani, Controlling the false discovery rate in behavior genetics research, Behav Brain Res, vol.125, pp.279-284, 2001.

L. P. Lim, N. C. Lau, P. Garrett-engele, A. Grimson, and J. M. Schelter, Microarray analysis shows that some micrornas downregulate large numbers of target mrnas, Nature, vol.433, pp.769-773, 2005.

A. Lal, F. Navarro, C. A. Maher, L. E. Maliszewski, and N. Yan, mir-24 inhibits cell proliferation by targeting e2f2, myc, and other cell-cycle genes via binding to ''seedless'' 39utr microrna recognition elements, Mol Cell, vol.35, pp.610-625, 2009.

N. Xu, T. Papagiannakopoulos, G. Pan, J. A. Thomson, and K. S. Kosik, Microrna-145 regulates oct4, sox2, and klf4 and represses pluripotency in human embryonic stem cells, Cell, vol.137, pp.647-658, 2009.

Z. Li, M. Q. Hassan, M. Jafferji, R. I. Aqeilan, and R. Garzon, Biological functions of mir-29b contribute to positive regulation of osteoblast differentiation, J Biol Chem, vol.284, pp.15676-15684, 2009.

G. L. Papadopoulos, P. Alexiou, M. Maragkakis, M. Reczko, and A. G. Hatzigeorgiou, Diana-mirpath: Integrating human and mouse micrornas in pathways, Bioinformatics, vol.25, pp.1991-1993, 2009.

T. Elkan-miller, I. Ulitsky, R. Hertzano, A. Rudnicki, and A. A. Dror, Integration of transcriptomics, proteomics, and microrna analyses reveals novel microrna regulation of targets in the mammalian inner ear, PLoS One, vol.6, p.18195, 2011.

M. A. Harris, J. Clark, A. Ireland, J. Lomax, and M. Ashburner, The gene ontology (go) database and informatics resource, Nucleic Acids Res, vol.32, pp.258-261, 2004.

N. Liu, A. H. Williams, Y. Kim, J. Mcanally, and S. Bezprozvannaya, An intragenic mef2-dependent enhancer directs muscle-specific expression of micrornas 1 and 133, Proc Natl Acad Sci U S A, vol.104, pp.20844-20849, 2007.

D. Yan, X. Dong, X. Chen, L. Wang, and C. Lu, Microrna-1/206 targets c-met and inhibits rhabdomyosarcoma development, J Biol Chem, vol.284, pp.29596-29604, 2009.

Y. Mishima, C. Abreu-goodger, A. A. Staton, C. Stahlhut, and C. Shou, Zebrafish mir-1 and mir-133 shape muscle gene expression and regulate sarcomeric actin organization, Genes Dev, vol.23, pp.619-632, 2009.

A. Shkumatava, A. Stark, H. Sive, and D. P. Bartel, Coherent but overlapping expression of micrornas and their targets during vertebrate development, Genes Dev, vol.23, pp.466-481, 2009.

R. Garzon, C. Heaphy, V. Havelange, M. Fabbri, and S. Volinia, Microrna 29b functions in acute myeloid leukemia, Blood, vol.114, pp.5331-5341, 2009.

Y. Xiong, J. H. Fang, J. P. Yun, J. Yang, and Y. Zhang, Effects of microrna-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma, Hepatology, vol.51, pp.836-845, 2010.

H. Wang, R. Garzon, H. Sun, K. J. Ladner, and R. Singh, Nf-kappab-yy1-mir-29 regulatory circuitry in skeletal myogenesis and rhabdomyosarcoma, Cancer Cell, vol.14, pp.369-381, 2008.

Y. Saito, G. Liang, G. Egger, J. M. Friedman, and J. C. Chuang, Specific activation of microrna-127 with downregulation of the proto-oncogene bcl6 by chromatin-modifying drugs in human cancer cells, Cancer Cell, vol.9, pp.435-443, 2006.

S. Vasudevan, Y. Tong, and J. A. Steitz, Switching from repression to activation: micrornas can up-regulate translation, Science, vol.318, pp.1931-1934, 2007.

D. Astuti, F. Latif, K. Wagner, D. Gentle, and W. N. Cooper, Epigenetic alteration at the dlk1-gtl2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and wilms' tumour, Br J Cancer, vol.92, pp.1574-1580, 2005.

L. Zhang, S. Volinia, T. Bonome, G. A. Calin, and J. Greshock, Genomic and epigenetic alterations deregulate microrna expression in human epithelial ovarian cancer, Proc Natl Acad Sci U S A, vol.105, pp.7004-7009, 2008.

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, and P. Charbord, Mesenchymal stem cell features of ewing tumors, Cancer Cell, vol.11, pp.421-429, 2007.

Z. Li, M. Q. Hassan, S. Volinia, A. J. Van-wijnen, and J. L. Stein, A microrna signature for a bmp2-induced osteoblast lineage commitment program, Proc Natl Acad Sci U S A, vol.105, pp.13906-13911, 2008.

R. F. Duisters, A. J. Tijsen, B. Schroen, J. J. Leenders, and V. Lentink, ) mir-133 and mir-30 regulate connective tissue growth factor: implications for a role of micrornas in myocardial matrix remodeling, Circ Res, vol.104, pp.6-178, 2009.

T. Takagi, A. Iio, Y. Nakagawa, T. Naoe, and N. Tanigawa, Decreased expression of microrna-143 and -145 in human gastric cancers, Oncology, vol.77, pp.12-21, 2009.

N. Riggi, M. L. Suv, C. D. Vito, P. Provero, and J. C. Stehle, Ews-fli-1 modulates mirna145 and sox2 expression to initiate mesenchymal stem cell reprogramming toward ewing sarcoma cancer stem cells, Genes Dev, vol.24, pp.916-932, 2010.

A. N. Packer, Y. Xing, S. Q. Harper, L. Jones, and B. L. Davidson, The bifunctional microrna mir-9/mir-9* regulates rest and corest and is downregulated in huntington's disease, J Neurosci, vol.28, pp.14341-14346, 2008.

H. Luo, H. Zhang, Z. Zhang, X. Zhang, and B. Ning, Down-regulated mir-9 and mir-433 in human gastric carcinoma, J Exp Clin Cancer Res, vol.28, p.82, 2009.

S. Baskerville and D. P. Bartel, Microarray profiling of micrornas reveals frequent coexpression with neighboring mirnas and host genes, RNA, vol.11, pp.241-247, 2005.

A. Stark, J. Brennecke, N. Bushati, R. B. Russell, and S. M. Cohen, Animal micrornas confer robustness to gene expression and have a significant impact on 39utr evolution, Cell, vol.123, pp.1133-1146, 2005.

J. Tsang, J. Zhu, and A. Van-oudenaarden, Microrna-mediated feedback and feedforward loops are recurrent network motifs in mammals, Mol Cell, vol.26, pp.753-767, 2007.

R. Shalgi, D. Lieber, M. Oren, and Y. Pilpel, Global and local architecture of the mammalian microrna-transcription factor regulatory network, PLoS Comput Biol, vol.3, p.131, 2007.

A. Re, D. Cor, D. Taverna, and M. Caselle, Genome-wide survey of micrornatranscription factor feed-forward regulatory circuits in human, Mol Biosyst, vol.5, pp.854-867, 2009.

O. Friard, A. Re, D. Taverna, M. D. Bortoli, and D. Cor, Circuitsdb: a database of mixed microrna/transcription factor feed-forward regulatory circuits in human and mouse, BMC Bioinformatics, vol.11, p.435, 2010.

C. Olsen, P. E. Meyer, and G. Bontempi, On the impact of entropy estimation on transcriptional regulatory network inference based on mutual information, EURASIP J Bioinform Syst Biol, p.308959, 2009.

J. Chen, J. Lozach, E. W. Garcia, B. Barnes, and S. Luo, Highly sensitive and specific microrna expression profiling using beadarray technology, Nucleic Acids Res, vol.36, p.87, 2008.