B. Altvater, S. Landmeier, S. Pscherer, J. Temme, K. Schweer et al., 2B4 (CD244) signaling by recombinant antigen-specific chimeric receptors costimulates natural killer cell activation to leukemia and neuroblastoma cells, Clin. Cancer Res, vol.15, pp.4857-4866, 2009.

J. Ban, I. Bennani-baiti, M. Kauer, K. L. Schaefer, C. Poremba et al., EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma, Cancer Res, vol.68, pp.7100-7109, 2008.

J. Ban, G. Jug, P. Mestdagh, R. Schwentner, M. Kauer et al., Hsa-mir-145 is the top EWS-FLI1 repressed microRNA involved in a positive feed-back loop in Ewing's sarcoma, Oncogene, vol.30, pp.2173-2180, 2010.

I. Bennani-baiti, D. Aryee, J. Ban, I. Machado, M. Kauer et al., Notch signaling is off and is uncoupled from HES1 expression in Ewing's sarcoma, J. Pathol, vol.225, pp.353-363, 2011.

A. Boro, K. Pretre, F. Rechfeld, V. Thalhammer, S. Oesch et al., Small-molecule screen identifies modulators of EWS/FLI1 target gene expression and cell survival in Ewing's sarcoma, Int. J. Cancer, 2012.

W. De-lau, N. Barker, T. Y. Low, B. K. Koo, V. S. Li et al., Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling, Nature, vol.476, pp.293-297, 2011.

D. Barco, S. Vazquez-martin, A. Cufi, S. Oliveras-ferraros, C. Bosch-barrera et al., Metformin: multifaceted protection against cancer, Oncotarget, vol.2, pp.896-917, 2011.

O. Delattre, J. Zucman, B. Plougastel, C. Desmaze, T. Melot et al., Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours, Nature, vol.359, pp.162-165, 1992.

S. G. Dubois, M. D. Krailo, S. L. Lessnick, R. Smith, Z. Chen et al., Phase II study of intermediate-dose cytarabine in patients with relapsed or refractory Ewing sarcoma: a report from the Children's Oncology Group, Pediatr. Blood Cancer, vol.52, pp.324-327, 2009.

H. V. Erkizan, Y. Kong, M. Merchant, S. Schlottmann, J. S. Barber-rotenberg et al., A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma, Nat. Med, vol.15, pp.750-756, 2009.

H. V. Erkizan, L. J. Scher, S. E. Gamble, J. S. Barber-rotenberg, K. P. Sajwan et al., Novel peptide binds EWS-FLI1 and reduces the oncogenic potential in Ewing tumors, Cell Cycle, vol.10, pp.3397-3408, 2011.

V. Evdokimova, C. Tognon, T. Ng, P. Ruzanov, N. Melnyk et al., Translational activation of snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition, Cancer Cell, vol.15, pp.402-415, 2009.

C. Garofalo, M. C. Manara, G. Nicoletti, M. T. Marino, P. L. Lollini et al., Efficacy of and resistance to anti-IGF-1R therapies in Ewing's sarcoma is dependent on insulin receptor signaling, Oncogene, vol.30, pp.2730-2740, 2011.

P. J. Grohar, G. M. Woldemichael, L. B. Griffin, A. Mendoza, Q. R. Chen et al., Identification of an inhibitor of the EWS-FLI1 oncogenic transcription factor by high-throughput screening, J. Natl. Cancer Inst, vol.103, pp.962-978, 2011.

T. G. Grunewald, I. Diebold, I. Esposito, S. Plehm, K. Hauer et al., STEAP1 is associated with the invasive and oxidative stress phenotype of Ewing tumors, vol.10, pp.52-65, 2012.

T. G. Grunewald, A. Ranft, I. Esposito, P. Da-silva-buttkus, M. Aichler et al., High STEAP1 expression is associated with improved outcome of Ewing's sarcoma patients, Ann. Oncol, 2012.

C. M. Hattinger, U. Potschger, M. Tarkkanen, J. Squire, M. Zielenska et al., Prognostic impact of chromosomal aberrations in Ewing tumours, Br. J. Cancer, vol.86, pp.1763-1769, 2002.

A. L. Ho and G. K. Schwartz, Targeting of insulin-like growth factor type 1 receptor in Ewing sarcoma: unfulfilled promise or a promising beginning?, J. Clin. Oncol, vol.29, pp.4581-4583, 2011.

P. G. Ince, J. R. Highley, J. Kirby, S. B. Wharton, H. Takahashi et al., Molecular pathology and genetic advances in amyotrophic lateral sclerosis: an emerging molecular pathway and the significance of glial pathology, Acta Neuropathol, vol.122, pp.657-671, 2011.

X. Jiang, Y. Gwye, D. Russell, C. Cao, D. Douglas et al., CD133 expression in chemo-resistant Ewing sarcoma cells, BMC Cancer, vol.10, p.116, 2010.

S. Kailayangiri, B. Altvater, J. Meltzer, S. Pscherer, A. Luecke et al., The ganglioside antigen GD2 is surface-expressed in Ewing sarcoma and allows for MHCindependent immune targeting, Br. J. Cancer, vol.106, pp.1123-1133, 2012.

M. Kalos, Muscle CARs and TcRs: turbo-charged technologies for the (T cell) masses, Cancer Immunol. Immunother, vol.61, pp.127-135, 2012.

S. Kofman, C. P. Perlia, and S. G. Economou, Mithramycin in the treatment of metastatic Ewing's sarcoma, Cancer, vol.31, pp.889-893, 1973.

L. Deley, M. C. Delattre, O. Schaefer, K. L. Burchill, S. A. Koehler et al., Impact of EWS-ETS fusion type on disease progression in Ewing's sarcoma/peripheral primitive neuroectodermal tumor: prospective results from the cooperative Euro-EWING 99 Trial, J. Clin. Oncol, vol.28, pp.1982-1988, 2010.

P. P. Lin, M. K. Pandey, F. Jin, S. Xiong, M. Deavers et al., EWS-FLI1 induces developmental abnormalities and accelerates sarcoma formation in a transgenic mouse model, Cancer Res, vol.68, pp.8968-8975, 2008.

A. Lissat, T. Vraetz, M. Tsokos, R. Klein, M. Braun et al., Interferon-gamma sensitizes resistant Ewing's sarcoma cells to tumor necrosis factor apoptosisinducing ligand-induced apoptosis by up-regulation of caspase-8 without altering chemosensitivity, Am. J. Pathol, vol.170, pp.1917-1930, 2007.

C. U. Louis, B. Savoldo, G. Dotti, M. Pule, E. Yvon et al., Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma, Blood, vol.118, pp.6050-6056, 2011.

C. Mackintosh, J. L. Ordonez, D. J. Garcia-dominguez, V. Sevillano, A. Llombart-bosch et al., 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma, Oncogene, vol.31, pp.1287-1298, 2011.

A. Mendoza, S. H. Hong, T. Osborne, M. A. Khan, K. Campbell et al., Modeling metastasis biology and therapy in real time in the mouse lung, J. Clin. Invest, vol.120, pp.2979-2988, 2010.

X. Meng, D. Zhu, S. Yang, X. Wang, Z. Xiong et al., Cytoplasmic MTDH provides a survival advantage under conditions of stress by acting as an RNA binding protein, J. Biol. Chem, vol.287, pp.4485-4491, 2011.

M. S. Merchant, X. Yang, F. Melchionda, M. Romero, R. Klein et al., Interferon gamma enhances the effectiveness of tumor necrosis factor-related apoptosis-inducing ligand receptor agonists in a xenograft model of Ewing's sarcoma, Cancer Res, vol.64, pp.8349-8356, 2004.

A. Merlos-suarez, F. M. Barriga, P. Jung, M. Iglesias, M. V. Cespedes et al., The intestinal stem cell signature identifies colorectal cancer stem cells and predicts disease relapse, Cell Stem Cell, vol.8, pp.511-524, 2011.

E. Metzger, A. Imhof, D. Patel, P. Kahl, K. Hoffmeyer et al., Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4, Nature, vol.464, pp.792-796, 2010.

F. Nakatani, M. Ferracin, M. C. Manara, S. Ventura, V. Del-monaco et al., miR-34a predicts survival of Ewing's sarcoma patients and directly influences cell chemosensitivity and malignancy, J. Pathol, vol.226, pp.796-805, 2011.

T. L. Ng, G. Leprivier, M. D. Robertson, C. Chow, M. J. Martin et al., , 2012.

, The AMPK stress response pathway mediates anoikis resistance through inhibition of mTOR and suppression of protein synthesis, Cell Death Differ, vol.19, pp.501-510

G. A. Odri, S. Dumoucel, G. Picarda, S. Battaglia, F. Lamoureux et al., Zoledronic acid as a new adjuvant therapeutic strategy for Ewing's sarcoma patients, Cancer Res, vol.70, pp.7610-7619, 2010.

T. S. Park, S. A. Rosenberg, and R. A. Morgan, Treating cancer with genetically engineered T cells, Trends Biotechnol, vol.29, pp.550-557, 2011.

G. Picarda, S. Surget, R. Guiho, S. Teletchea, M. Berreur et al., A functional, new short isoform of death receptor 4 in Ewing's sarcoma cell lines may be involved in TRAIL sensitivity/resistance mechanisms, Mol. Cancer Res, vol.10, pp.336-346, 2012.

S. Postel-vinay, A. S. Veron, F. Tirode, G. Pierron, S. Reynaud et al., Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma, Nat. Genet, vol.44, pp.323-327, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-02438686

J. C. Potratz, D. N. Saunders, D. H. Wai, T. L. Ng, S. E. Kinney et al., Synthetic lethality screens reveal RPS6 and MST1R as modifiers of insulin-like growth factor-1 receptor inhibitor activity in childhood sarcomas, Cancer Res, vol.70, pp.8770-8781, 2010.

S. C. Prasad, P. J. Thraves, K. G. Bhatia, M. E. Smulson, and A. Dritschilo, Enhanced poly (adenosine diphosphate ribose) polymerase activity and gene expression in Ewing's sarcoma cells, Cancer Res, vol.50, pp.38-43, 1990.

P. Roberts, S. A. Burchill, S. Brownhill, C. J. Cullinane, C. Johnston et al., Ploidy and karyotype complexity are powerful prognostic indicators in the Ewing's sarcoma family of tumors: a study by the United Kingdom Cancer Cytogenetics and the Children's Cancer and Leukaemia Group, Genes Chromosomes Cancer, vol.47, pp.207-220, 2008.

S. Savola, A. Klami, A. Tripathi, T. Niini, M. Serra et al., Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors, BMC Cancer, vol.9, p.17, 2009.

K. Stegmaier, J. S. Wong, K. N. Ross, K. T. Chow, D. Peck et al., Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma, PLoS Med, vol.4, p.122, 2007.

M. L. Suva, N. Riggi, J. C. Stehle, K. Baumer, S. Tercier et al., Identification of cancer stem cells in Ewing's sarcoma, Cancer Res, vol.69, pp.1776-1781, 2009.

U. Thiel, S. Pirson, C. Muller-spahn, H. Conrad, D. H. Busch et al., Specific recognition and inhibition of Ewing tumour growth by antigen-specific allo-restricted cytotoxic T cells, Br. J. Cancer, vol.104, pp.948-956, 2011.

F. Walker, H. H. Zhang, A. Odorizzi, and A. W. Burgess, LGR5 is a negative regulator of tumourigenicity, antagonizes Wnt signalling and regulates cell adhesion in colorectal cancer cell lines, PLoS ONE, vol.6, p.22733, 2011.

X. Yang, M. S. Merchant, M. E. Romero, M. Tsokos, L. H. Wexler et al., Induction of caspase 8 by interferon gamma renders some neuroblastoma (NB) cells sensitive to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but reveals that a lack of membrane TR1/TR2 also contributes to TRAIL resistance in NB, Cancer Res, vol.63, pp.1122-1129, 2003.