A. Barski, S. Cuddapah, K. Cui, T. Y. Roh, D. E. Schones et al., High-resolution profiling of histone methylations in the human genome, Cell, vol.129, pp.823-837, 2007.

D. S. Johnson, A. Mortazavi, R. M. Myers, and B. Wold, Genome-wide mapping of in vivo protein-DNA interactions, Science, vol.316, pp.1497-1502, 2007.

G. Robertson, M. Hirst, M. Bainbridge, M. Bilenky, Y. Zhao et al., Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing, Nat. Methods, vol.4, pp.651-657, 2007.

M. J. Buck and J. D. Lieb, ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments, Genomics, vol.83, pp.349-360, 2004.

A. P. Fejes, G. Robertson, M. Bilenky, R. Varhol, M. Bainbridge et al., FindPeaks 3.1: a tool for identifying areas of enrichment from massively parallel short-read sequencing technology, Bioinformatics, vol.24, pp.1729-1730, 2008.

H. Ji, H. Jiang, W. Ma, D. S. Johnson, R. M. Myers et al., An integrated software system for analyzing ChIP-chip and ChIP-seq data, Nat. Biotechnol, vol.26, pp.1293-1300, 2008.

V. Kharchenko, M. Y. Tolstorukov, and P. J. Park, Design and analysis of ChIP-seq experiments for DNA-binding proteins, Nat. Biotechnol, vol.26, pp.1351-1359, 2008.

Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S. Johnson et al., Model-based analysis of ChIP-Seq (MACS), 2008.

, Genome Biol, vol.9, p.137

J. Rozowsky, G. Euskirchen, R. K. Auerbach, Z. D. Zhang, T. Gibson et al., PeakSeq enables systematic scoring of ChIP-seq experiments relative to controls, Nat. Biotechnol, vol.27, pp.66-75, 2009.

A. Valouev, D. S. Johnson, A. Sundquist, C. Medina, E. Anton et al., Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data, Nat. Methods, vol.5, pp.829-834, 2008.

D. A. Nix, S. J. Courdy, and K. M. Boucher, Empirical methods for controlling false positives and estimating confidence in ChIP-Seq peaks, BMC Bioinformatics, vol.9, p.523, 2008.

A. P. Boyle, J. Guinney, G. E. Crawford, and T. S. Furey, F-Seq: a feature density estimator for high-throughput sequence tags, Bioinformatics, vol.24, pp.2537-2538, 2008.

A. Mortazavi, B. A. Williams, K. Mccue, L. Schaeffer, and B. Wold, Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nat. Methods, vol.5, pp.621-628, 2008.

R. Jothi, S. Cuddapah, A. Barski, K. Cui, and K. Zhao, Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq data, Nucleic Acids Res, vol.36, pp.5221-5231, 2008.

E. Birney, J. A. Stamatoyannopoulos, A. Dutta, R. Guigo, T. R. Gingeras et al., Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project, Nature, vol.447, pp.799-816, 2007.

N. Guillon, F. Tirode, V. Boeva, A. Zynovyev, E. Barillot et al., The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function, PLoS ONE, vol.4, p.4932, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-02438659

W. A. May, M. L. Gishizky, S. L. Lessnick, L. B. Lunsford, B. C. Lewis et al., Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation, Proc. Natl Acad. Sci. USA, vol.90, pp.5752-5756, 1993.

D. Karolchik, R. M. Kuhn, R. Baertsch, G. P. Barber, H. Clawson et al., The UCSC Genome Browser Database: 2008 update, Nucleic Acids Res, vol.36, pp.773-779, 2008.

T. L. Bailey and C. Elkan, Fitting a mixture model by expectation maximization to discover motifs in biopolymers, Proc. Int. Conf. Intell. Syst. Mol. Biol, vol.2, pp.28-36, 1994.

C. J. Schoenherr and D. J. Anderson, The neuron-restrictive silencer factor (NRSF): a coordinate repressor of multiple neuron-specific genes, Science, vol.267, pp.1360-1363, 1995.

C. M. Horvath, Z. Wen, and J. E. Darnell, A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain, Genes Dev, vol.9, pp.984-994, 1995.

T. H. Kim, Z. K. Abdullaev, A. D. Smith, K. A. Ching, D. I. Loukinov et al., Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome, Cell, vol.128, pp.1231-1245, 2007.

N. Riggi, M. L. Suva, D. Suva, L. Cironi, P. Provero et al., EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells, Cancer Res, vol.68, pp.2176-2185, 2008.

H. Li, J. Ruan, and R. Durbin, Mapping short DNA sequencing reads and calling variants using mapping quality scores, Genome Res, vol.18, pp.1851-1858, 2008.

E. S. Lander, L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody et al., Initial sequencing and analysis of the human genome, Nature, vol.409, pp.860-921, 2001.

E. Wingender, The TRANSFAC project as an example of framework technology that supports the analysis of genomic regulation, Brief Bioinform, vol.9, pp.326-332, 2008.

P. C. Hollenhorst, A. A. Shah, C. Hopkins, and B. J. Graves, Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family, Genes Dev, vol.21, pp.1882-1894, 2007.

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, P. Charbord et al., Mesenchymal stem cell features of Ewing tumors, Cancer Cell, vol.11, pp.421-429, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-02438637

M. Fukuma, H. Okita, J. Hata, and A. Umezawa, Upregulation of Id2, an oncogenic helix-loop-helix protein, is mediated by the chimeric EWS/ets protein in Ewing sarcoma, Oncogene, vol.22, pp.1-9, 2003.

O. M. Tirado, S. Mateo-lozano, J. Villar, L. E. Dettin, A. Llort et al., Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing's sarcoma cells, Cancer Res, vol.66, pp.9937-9947, 2006.

L. Cironi, N. Riggi, P. Provero, N. Wolf, M. L. Suva et al., IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells, PLoS ONE, vol.3, p.2634, 2008.

G. E. Crooks, G. Hon, J. M. Chandonia, and S. E. Brenner, WebLogo: a sequence logo generator, Genome Res, vol.14, pp.1188-1190, 2004.