F. Lamoureux, V. Trichet, C. Chipoy, F. Blanchard, F. Gouin et al., Recent advances in the management of osteosarcoma and forthcoming therapeutic strategies, Expert Rev Anticancer Ther, vol.7, pp.169-81, 2007.

P. Picci, Osteosarcoma (osteogenic sarcoma), Orphanet J Rare Dis, vol.2, p.6, 2007.

J. Ewing, Diffuse endothelioma of bone, Proc NY Pathol Soc, vol.21, pp.17-19, 1921.

H. W. Hense, S. Ahrens, and M. Paulussen, Descriptive epidemiology of Ewing's tumors: analysis of German patients from (EI)CESS 1980-1997, Klin Padiatr, vol.211, pp.271-276, 1999.

C. A. Stiller, S. S. Bielack, G. Jundt, and E. Steliarova-foucher, Bone tumours in European children and adolescents 1978-1997. Report from the Automated Childhood Cancer Information System Project, Eur J Cancer, vol.42, pp.2124-2159, 2006.

Y. S. Lau, I. E. Adamopoulos, A. Sabokbar, H. Giele, C. Gibbons et al., Cellular and humoral mechanisms of osteoclast formation in Ewing's sarcoma, Br J Cancer, vol.96, pp.1716-1738, 2007.

R. Jaffe, M. Santamaria, and E. J. Yunis, The neuroectodermal tumor of bone, Am J Surg Pathol, vol.8, pp.885-98, 1984.

A. L. Folpe, E. M. Chand, J. R. Goldblum, and S. W. Weiss, Expression of Fli-1, a nuclear transcription factor, distinguishes vascular neoplasms from potential mimics, Am J Surg Pathol, vol.25, pp.1061-1067, 2001.

W. A. May, M. L. Gishizky, and S. L. Lessnick, Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation, Proc Natl Acad Sci U S A, vol.90, pp.5752-5758, 1993.

F. Nakatani, K. Tanaka, and R. Sakimura, Identification of p21WAF1/ CIP1 as a direct target of EWS-Fli1 oncogenic fusion protein, J Biol Chem, vol.278, pp.15105-15120, 2003.

L. Dauphinot, D. Oliveira, C. Melot, and T. , Analysis of the expression of cell cycle regulators in Ewing cell lines: EWS-FLI-1 modulates p57KIP2and c-Myc expression, Oncogene, vol.20, pp.3258-65, 2001.

M. D. Cohen, E. M. Bugaieski, M. Haliloglu, P. Faught, and A. R. Siddiqui, Visual presentation of the staging of pediatric solid tumors, Radiographics, vol.16, pp.523-568, 1996.

S. J. Cotterill, S. Ahrens, and M. Paulussen, Prognostic factors in Ewing's tumor of bone: analysis of 975 patients from the European Intergroup Cooperative Ewing's Sarcoma Study, J Clin Oncol, vol.18, pp.3108-3122, 2000.

S. Bouralexis, D. M. Findlay, and A. Evdokiou, Death to the bad guys: targeting cancer via Apo2L/TRAIL, Apoptosis, vol.10, pp.35-51, 2005.

I. Holen and C. M. Shipman, Role of osteoprotegerin (OPG) in cancer, Clin Sci (Lond), vol.110, pp.279-91, 2006.

L. Zhang and B. Fang, Mechanisms of resistance to TRAIL-induced apoptosis in cancer, Cancer Gene Ther, vol.12, pp.228-265, 2005.

N. B. Liabakk and T. Espevik, Monoclonal antibodies against TRAIL, Vitam Horm, vol.12, pp.65-79, 2004.

F. A. Kruyt, TRAIL and cancer therapy, Cancer Lett, vol.263, pp.14-25, 2008.

A. W. Tolcher, M. Mita, and N. J. Meropol, Phase I pharmacokinetic and biologic correlative study of mapatumumab, a fully human monoclonal antibody with agonist activity to tumor necrosis factor-related apoptosis-inducing ligand receptor-1, J Clin Oncol, vol.25, pp.1390-1395, 2007.

R. Plummer, G. Attard, and S. Pacey, Phase 1 and pharmacokinetic study of lexatumumab in patients with advanced cancers, Clin Cancer Res, vol.13, pp.6187-94, 2007.

P. Marini, Drug evaluation: lexatumumab, an intravenous human agonistic mAb targeting TRAIL receptor 2, Curr Opin Mol Ther, vol.8, pp.539-585, 2006.

B. M. Kurbanov, L. F. Fecker, C. C. Geilen, W. Sterry, and J. Eberle, Resistance of melanoma cells to TRAIL does not result from upregulation of antiapoptotic proteins by NF-?B but is related to downregulation of initiator caspases and DR4, Oncogene, vol.26, pp.3364-77, 2007.

A. Martínez-ramírez, S. Rodríguez-perales, and B. Meléndez, Characterization of the A673 cell line (Ewing tumor) by molecular cytogenetic techniques, Cancer Genet Cytogenet, vol.141, pp.138-180, 2003.

A. Kamijo, T. Koshino, M. Uesugi, H. Nitto, and T. Saito, Inhibition of lung metastasis of osteosarcoma cell line POS-1 transplanted into mice by thigh ligation, Cancer Lett, vol.188, pp.213-222, 2002.

B. Klein, S. Pals, and R. Masse, Studies of bone and soft-tissue tumours induced in rats with radioactive cerium chloride, Int J Cancer, vol.20, pp.112-121, 1977.

M. J. Joliat, S. Umeda, B. L. Lyons, M. A. Lynes, and L. D. Shultz, Establishment and characterization of a new osteogenic cell line (MOS-J) from a spontaneous C57BL/6J mouse osteosarcoma, In Vivo, vol.16, pp.223-231, 2002.

F. L. Graham, J. Smiley, W. C. Russell, and R. Nairn, Characteristics of a human cell line transformed by DNA from human adenovirus type 5, J Gen Virol, vol.36, pp.59-74, 1977.

Y. Wittrant, F. Lamoureux, and K. Mori, RANKL directly induces bone morphogenetic protein-2 expression in RANK-expressing POS-1 osteosarcoma cells, Int J Oncol, vol.28, pp.261-270, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00667510

B. Ory, M. F. Heymann, A. Kamijo, F. Gouin, D. Heymann et al., Zoledronic acid suppresses lung metastases and prolongs overall survival of osteosarcoma-bearing mice, Cancer, vol.104, pp.2522-2531, 2005.

V. Floch, S. Loisel, and E. Guenin, Cation substitution in cationic phosphonolipids: a new concept to improve transfection activity and decrease cellular toxicity, J Med Chem, vol.43, pp.4617-4645, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01771377

V. Floch, P. Delépine, and C. Guillaume, Systemic administration of cationic phosphonolipids/DNA complexes and the relationship between formulation and lung transfection efficiency, Biochim Biophys Acta, vol.1464, pp.95-103, 2000.
URL : https://hal.archives-ouvertes.fr/hal-01771344

K. Scotlandi, S. Benini, and M. C. Manara, Murine model for skeletal metastases of Ewing's sarcoma, J Orthop Res, vol.18, pp.959-66, 2000.

A. Evdokiou, S. Bouralexis, and G. J. Atkins, Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRAIL-induced apoptosis, Int J Cancer, vol.99, pp.491-504, 2002.

H. U. Kontny, K. Hämmerle, R. Klein, P. Shayan, C. L. Mackall et al., Sensitivity of Ewing's sarcoma to TRAIL-induced apoptosis, Cell Death Differ, vol.8, pp.506-520, 2001.

M. Merchant, Y. X. Melchionda, and F. , Interferon ? enhances the effectiveness of tumor necrosis factor-related apoptosis-inducing ligand receptor agonists in a xenograft model of Ewing's sarcoma, Cancer Res, vol.64, pp.8349-56, 2004.

S. Wang and W. S. El-deiry, TRAIL and apoptosis induction by TNF-family death receptors, Oncogene, vol.22, pp.8628-8661, 2003.

R. F. Kelley, K. Totpal, and S. H. Lindstrom, receptor-selective mutants of apoptosis-inducing ligand 2/tumor necrosis fctor-apoptosisinducing ligand reveal a greater contribution of death receptor (DR) 5 than DR4 to apoptosis signaling, J Biol Chem, vol.208, pp.2205-2217, 2005.

Y. Wang, I. H. Engels, D. A. Knee, M. Nasoff, Q. L. Deveraux et al., Synthetic lethal targeting of MYC by activation of the DR5 death receptor pathway, Cancer Cell, vol.5, pp.501-513, 2004.

D. Mahalingam, E. Szegezdi, M. Keane, S. D. Jong, and A. Samali, TRAIL receptor signalling and modulation: Are we on the right TRAIL?, Cancer Treat Rev, vol.35, pp.280-288, 2009.

A. Ashkenazi, R. C. Pai, and S. Fong, Safety and antitumor activity of recombinant soluble Apo2 ligand, J Clin Invest, vol.104, pp.155-62, 1999.

H. Jin, R. Yang, and S. Fong, Apo2 ligand/tumor necrosis factorrelated apoptosis-inducing ligand cooperates with chemotherapy to inhibit orthotopic lung tumor growth and improve survival, Cancer Res, vol.64, pp.4900-4905, 2004.

S. Shankar, R. Singh, T. Chen, X. Thakkar, H. Firnin et al., The sequential treatment with ionizing radiation followed by TRAIL/Apo-2L reduces tumor growth and induces apoptosis of breast tumor xenografts in nude mice, Int J Oncol, vol.24, pp.1133-1173, 2004.

F. Lamoureux, P. Richard, and Y. Wittrant, Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption, Cancer Res, vol.67, pp.7308-7326, 2007.

S. Paget, The distribution of secondary growths in cancer of the breast, Lancet, vol.1, pp.571-573, 1889.

J. M. Chirgwin and T. A. Guise, Molecular mechanisms of tumor-bone interactions in osteolytic metastases, Crit Rev Eukaryot Gene Expr, vol.10, pp.159-78, 2000.

J. M. Chirgwin, K. S. Mohammad, and T. A. Guise, Tumor-bone cellular interactions in skeletal metastases, J Musculoskelet Neuronal Interact, vol.4, pp.308-326, 2004.

A. Grosse-wilde, O. Voloshanenko, and S. L. Bailey, TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development, J Clin Invest, vol.118, pp.100-110, 2008.

N. Mitsiades, V. Poulaki, C. Mitsiades, and M. Tsokos, Ewing's sarcoma family of tumors are sensitive to tumor necrosis factor-related apoptosis inducing ligand and express death receptor 4 and 5, Cancer Res, vol.61, pp.2704-2716, 2001.

D. Lawrence, Z. Shahrokh, and S. Marsters, Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions, Nat Med, vol.7, pp.383-388, 2001.