C. Fletcher and K. K. Unni, Mertens F, editors. World Health Organisation classification of tumours. Pathology and genetics of tumours of soft tissue and bone, 2002.

J. Derré, R. Lagacé, and A. Nicolas, Leiomyosarcomas and most malignant fibrous histiocytomas share very similar comparative genomic hybridization imbalances: an analysis of a series of 27 leiomyosarcomas, Lab Invest, vol.81, pp.211-216, 2001.

C. D. Fletcher, The evolving classification of soft tissue tumours: an update based on the new WHO classification, Histopathology, vol.48, pp.3-12, 2006.

F. Chibon, A. Mairal, and P. Fréneaux, The RB1 gene is the target of chromosome 13 deletions in malignant fibrous histiocytoma, Cancer Res, vol.60, pp.6339-6384, 2000.

M. Otaño-joos, G. Mechtersheimer, and S. Ohl, Detection of chromosomal imbalances in leiomyosarcoma by comparative genomic hybridization and interphase cytogenetics, Cytogenet Cell Genet, vol.90, pp.86-92, 2000.

J. Hu, U. N. Rao, S. Jasani, V. Khanna, K. Yaw et al., March 15, 2009 www.aacrjournals.org of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study, Loss Cancer Research Cancer Res, vol.69, issue.6, pp.20-27, 2005.

K. L. Du, H. S. Ip, and J. Li, Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation, Mol Cell Biol, vol.23, pp.2425-2462, 2003.

Z. Wang, D. Z. Wang, G. C. Pipes, and E. N. Olson, Myocardin is a master regulator of smooth muscle gene expression, Proc Natl Acad Sci U S A, vol.100, pp.7129-7163, 2003.

G. C. Pipes, E. E. Creemers, and E. N. Olson, The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis, Genes Dev, vol.20, pp.1545-56, 2006.

A. Vincent-salomon, N. Gruel, and C. Lucchesi, Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity, Breast Cancer Res, vol.9, p.24, 2007.

Z. Wu, R. A. Irizarry, R. Gentleman, F. M. Murillo, and F. Spencer, A model based background adjustment for oligonucleotide expression arrays, J Am Stat Assoc, vol.99, pp.909-926, 2004.

F. Tirode, K. Laud-duval, A. Prieur, B. Delorme, P. Charbord et al., Mesenchymal stem cell features of Ewing tumors, Cancer Cell, vol.11, pp.421-430, 2007.

D. Preter, K. Speleman, F. Combaret, and V. , Quantification of MYCN, DDX1, and NAG gene copy number in neuroblastoma using a real-time quantitative PCR assay, Mod Pathol, vol.15, pp.159-66, 2002.

Z. Wang, D. Z. Wang, D. Hockemeyer, J. Mcanally, A. Nordheim et al., Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression, Nature, vol.428, pp.185-194, 2004.

A. C. Culhane, G. Perrière, E. C. Considine, T. G. Cotter, and D. G. Higgins, Between-group analysis of microarray data, Bioinformatics, vol.18, pp.1600-1608, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00427316

Y. Liu, S. Sinha, O. G. Mcdonald, Y. Shang, M. H. Hoofnagle et al., Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression, J Biol Chem, vol.280, pp.9719-9746, 2005.

B. J. Holycross, R. S. Blank, M. M. Thompson, M. J. Peach, and G. K. Owens, Platelet-derived growth factor-BB-induced suppression of smooth muscle cell differentiation, Circ Res, vol.71, pp.1525-1557, 1992.

J. Chen, C. M. Kitchen, J. W. Streb, and J. M. Miano, Myocardin: a component of a molecular switch for smooth muscle differentiation, J Mol Cell Cardiol, vol.34, pp.1345-56, 2002.

D. Z. Wang and E. N. Olson, Control of smooth muscle development by the myocardin family of transcriptional coactivators, Curr Opin Genet Dev, vol.14, pp.558-66, 2004.

T. Yoshida, S. Sinha, and F. Dandré, Myocardin is a key regulator of CArG-dependent transcription of multiple smooth muscle marker genes, Circ Res, vol.92, pp.856-64, 2003.

J. Van-tuyn, S. Knaän-shanzer, and M. J. Van-de-watering, Activation of cardiac and smooth muscle-specific genes in primary human cells after forced expression of human myocardin, Cardiovasc Res, vol.67, pp.245-55, 2005.

I. Gorenne, J. L. Yoshida, and T. , LPP expression during in vitro smooth muscle differentiation and stentinduced vascular injury, Circ Res, vol.98, pp.378-85, 2006.

M. W. Majesky, Organizing motility: LIM domains, LPP, and smooth muscle migration, Circ Res, vol.98, pp.306-314, 2006.

M. M. Petit, H. Lindskog, and E. Larsson, Smooth muscle expression of lipoma preferred partner is mediated by an alternative intronic promoter that is regulated by serum response factor/myocardin, Circ Res, vol.103, pp.61-70, 2008.

M. A. Ghafar, A. G. Anastasiadis, and M. W. Chen, Acute hypoxia increases the aggressive characteristics and survival properties of prostate cancer cells, Prostate, vol.54, pp.58-67, 2003.

K. Helczynska, A. Kronblad, and A. Jögi, Hypoxia promotes a dedifferentiated phenotype in ductal breast carcinoma in situ, Cancer Res, vol.63, pp.1441-1445, 2003.

G. I. Abelev and N. L. Lazarevich, Control of differentiation in progression of epithelial tumors, Adv Cancer Res, vol.95, pp.61-113, 2006.

W. Cheuk and J. K. Chan, Advances in salivary gland pathology, Histopathology, vol.51, pp.1-20, 2007.

W. C. Van-staveren, D. W. Solís, and L. Delys, Human thyroid tumor cell lines derived from different tumor types present a common dedifferentiated phenotype, Cancer Res, vol.67, pp.8113-8133, 2007.

A. Edsjö, L. Holmquist, and S. Påhlman, Neuroblastoma as an experimental model for neuronal differentiation and hypoxia-induced tumor cell dedifferentiation, Semin Cancer Biol, vol.17, pp.248-56, 2007.

O. Mariani, C. Brennetot, and J. M. Coindre, JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas, Cancer Cell, vol.11, pp.361-74, 2007.

G. K. Owens, Regulation of differentiation of vascular smooth muscle cells, Physiol Rev, vol.75, pp.487-517, 1995.

G. K. Owens, M. S. Kumar, and B. R. Wamhoff, Molecular regulation of vascular smooth muscle cell differentiation in development and disease, Physiol Rev, vol.84, pp.767-801, 2004.

P. Hellstrand and S. Albinsson, Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton, Can J Physiol Pharmacol, vol.83, pp.869-75, 2005.

K. Inoue, K. Dewar, and N. Katsanis, The 1.4-Mb CMT1A duplication/HNPP deletion genomic region reveals unique genome architectural features and provides insights into the recent evolution of new genes, Genome Res, vol.11, pp.1018-1051, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00703255

S. S. Park, P. Stankiewicz, and W. Bi, Structure and evolution of the Smith-Magenis syndrome repeat gene clusters, SMS-REPs, Genome Res, vol.12, pp.729-767, 2002.

A. Forus, D. O. Weghuis, D. Smeets, O. Fodstad, O. Myklebost et al., Comparative genomic hybridization analysis of human sarcomas. II. Identification of novel amplicons at 6p and 17p in osteosarcomas, Genes Chromosomes Cancer, vol.14, pp.15-21, 1995.

M. C. Frühwald, M. S. O'dorisio, and Z. Dai, Aberrant hypermethylation of the major breakpoint cluster region in 17p11.2 in medulloblastomas but not supratentorial PNETs, Genes Chromosomes Cancer, vol.30, pp.38-47, 2001.

M. Van-dartel, P. W. Cornelissen, and S. Redeker, Amplification of 17p11.2 approximately p12, including PMP22, TOP3A, and MAPK7, in high-grade osteosarcoma, Cancer Genet Cytogenet, vol.139, pp.91-97, 2002.

W. El-rifai, M. Sarlomo-rikala, S. Knuutila, and M. Miettinen, DNA copy number changes in development and progression in leiomyosarcomas of soft tissues, Am J Pathol, vol.153, pp.985-90, 1998.

M. Wolf, M. Tarkkanen, and T. Hulsebos, Characterization of the 17p amplicon in human sarcomas: microsatellite marker analysis, Int J Cancer, vol.82, pp.329-362, 1999.

D. Z. Wang, S. Li, and D. Hockemeyer, Potentiation of serum response factor activity by a family of myocardinrelated transcription factors, Proc Natl Acad Sci U S A, vol.99, pp.14855-60, 2002.

K. L. Du, M. Chen, J. Li, J. J. Lepore, P. Mericko et al., Megakaryoblastic leukemia factor-1 transduces cytoskeletal signals and induces smooth muscle cell differentiation from undifferentiated embryonic stem cells, J Biol Chem, vol.279, pp.17578-86, 2004.

A. Selvaraj and R. Prywes, Expression profiling of serum inducible genes identifies a subset of SRF target genes that are MKL dependent, BMC Mol Biol, vol.5, p.13, 2004.

G. Farshid, M. Pradhan, J. Goldblum, and S. W. Weiss, Leiomyosarcoma of somatic soft tissues: a tumor of vascular origin with multivariate analysis of outcome in 42 cases, Am J Surg Pathol, vol.26, pp.2269-2278, 2002.

G. Pérot, J. Derré, and J. Coindre,